Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049276429> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3049276429 endingPage "102946" @default.
- W3049276429 startingPage "102946" @default.
- W3049276429 abstract "With the pathogenesis of Alzheimer's disease (AD) continuing to elude researchers, new approaches that look beyond amyloid β plaques (Aβ) deposition and tauopathy are needed to broaden the understanding of neurodegenerative mechanisms that propagate dementia. An innovative approach to understanding cognitive impairment in neurodegenerative disorders is to look beyond neurons to examine extracellular structures called perineuronal nets (PNNs). PNNs are condensed extracellular matrix (ECM) structures that surround neurons, forming a key element of the tetrapartite synapse. PNNs have multiple roles, but two of the most critical are the regulation of plasticity by stabilising synapses, and the protection of neurons and synaptic connections against damaging environmental stressors [[1]Reichelt A.C. Hare D.J. Bussey T.J. Saksida L.M. Perineuronal nets: plasticity, protection, and therapeutic potential.Trends Neurosci. 2019; 42Summary Full Text Full Text PDF PubMed Scopus (42) Google Scholar]. Within the cortex, PNNs form protective ‘scaffolds’ that envelop parvalbumin-expressing (PV+) GABAergic inhibitory interneurons that are vital for cognition [[2]Härtig W. Brauer K. Brückner G Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons.Neuroreport. 1992; https://doi.org/10.1097/00001756-199210000-00012Crossref PubMed Scopus (312) Google Scholar]. The fast spiking nature of PV+ interneurons means that they have high energy demands, enhancing their susceptibility to disruption, leading to excitatory / inhibitory imbalance in the cortex and cognitive dysfunction [[3]Inan M et al.Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability.Neurobiol. Dis. 2016; https://doi.org/10.1016/j.nbd.2016.04.004Crossref PubMed Scopus (56) Google Scholar]. When PNNs are degraded the protective shield surrounding neurons is removed, and exposure to neurotoxic insults can result in cell death [[4]Suttkus A. Rohn S. Jäger C. Arendt T. Morawski M. Neuroprotection against iron-induced cell death by perineuronal nets - an in vivo analysis of oxidative stress.Am. J. Neurodegener. Dis. 2012; PubMed Google Scholar]. Degradation of PNN structures is seen in a number of neurodegenerative diseases, including AD, and poses a critical pathogenic feature underpinning cognitive decline. A hallmark of AD is neuroinflammatory changes within the cortex, thought to be both a result and cause of cell death. One of the main drivers of the neuroinflammatory process are microglia – the brain's resident immune cells [[5]Harland M. Torres S. Liu J. Wang X. Neuronal mitochondria modulation of LPS-induced neuroinflammation.J. Neurosci. 2020; https://doi.org/10.1523/JNEUROSCI.2324-19.2020Crossref PubMed Scopus (18) Google Scholar]. Activation of microglia in AD occurs as a response to cell damage, as microglia dispose of neuronal debris by phagocytosis. However, it remains controversial whether prolonged activation of microglia is beneficial or detrimental in the pathogenesis of neurodegenerative diseases. When chronically activated, microglia can exacerbate neuronal damage through the release of proinflammatory cytokines (eg, TNF-α, IL-1β), reactive oxygen species and proteinases. Critically, these proteinases include ECM-cleaving enzymes known as matrix metalloproteinases (MMPs) – which have the capacity to cleave components of PNNs. Increased concentrations of MMPs, particularly MMP9, has been associated with the degradation of PNNs [[6]Pirbhoy P.S et al.Acute pharmacological inhibition of matrix metalloproteinase-9 activity during development restores perineuronal net formation and normalizes auditory processing in Fmr1 KO mice.J. Neurochem. 2020; https://doi.org/10.1111/jnc.15037Crossref PubMed Scopus (10) Google Scholar]. In the case of AD neuropathology, activated microglia not only secrete these PNN remodelling enzymes, but interact with injured neurons to strip away synapses [[7]Kettenmann H. Kirchhoff F. Verkhratsky A. Microglia: new roles for the synaptic stripper.Neuron. 2013; https://doi.org/10.1016/j.neuron.2012.12.023Summary Full Text Full Text PDF PubMed Scopus (720) Google Scholar]. Although studies using neuronal cultures show that PNNs act as a protective barrier against Aβ evoked toxicity [[8]Miyata S. Nishimura Y. Nakashima T. Perineuronal nets protect against amyloid β-protein neurotoxicity in cultured cortical neurons.Brain Res. 2007; https://doi.org/10.1016/j.brainres.2007.02.066Crossref Scopus (58) Google Scholar], the additional activation of microglia in pathological disease states is likely to be a critical mediator of neurodegeneration. In a study recently published by EBioMedicine, the link between PNN loss and microglial activation was directly examined by Crapser et al (in press [[9]Crapser, J. D. et al. Microglia facilitate loss of perineuronal nets in the Alzheimer's disease brain. EBioMedicine. (In Press)Google Scholar]), using postmortem brain tissue from transgenic mouse models of Alzheimer's disease pathology and AD patients. Using detailed histological stains and fluorescent microscopy, Crapser et al., observed the loss of PNNs from the subiculum – a brain region involved in memory that becomes damaged early in the course of AD pathogenesis. Within this tissue, fragmented components of PNNs were evident within microglia in both the 5xFAD mouse model of AD and human tissue, indicating that microglial cells had engulfed PNNs, or consumed the debris from their degradation. Either way, activated microglia appear critically implicated in PNN degradation – either indirectly through the secretion of ECM-cleaving enzymes and then engulfing the resulting PNN fragments, or by directly interacting with neurons to strip away PNNs. The suppression of microglia has been considered a therapeutic strategy in neurodegenerative states, as it may halt pathological neuroinflammation and allow regeneration. Crapser et al., show that inhibiting microglia by the administration of colony-stimulating factor 1 receptor inhibitor (CSF1R) PLX562 prevented the loss of PNNs in 5xFAD and aged 3xTg-AD mice, and also in mice systemically treated with pro-inflammatory LPS. Increased Aβ plaque-load is associated with the progression of AD pathology. Interestingly, in human brain tissue, fragments of aggrecan - a key structural component of PNNs – was found integrated into dense-core Aβ plaques, potentially driving the pathological burden of these structures through a positive feedback loop of microglial activation, PNN loss, Aβ-accumulation and neuroinflammation (Fig. 1). After PNN degradation or damage, the neurons that they had surrounded become vulnerable to environmental toxicity but are also more plastic and readily form new synapses. It is a possibility that the initial loss of PNNs in neurodegenerative disease acts as an endogenous compensatory mechanism to facilitate synaptic plasticity and reduce cognitive decline. Certainly, preclinical studies show that removal of PNNs can restore memory in mouse models of AD-pathologies [[10]Végh M.J et al.Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease.Acta Neuropathol. Commun. 2014; https://doi.org/10.1186/s40478-014-0076-zCrossref PubMed Scopus (69) Google Scholar]. However, with extended neuropathological progressions of disease, such as that seen in AD, the damage to neuroprotective PNNs surrounding neurons is likely to accelerate degeneration and exacerbate dementia, leading to advanced cognitive decline. The author has no conflicts of interest to disclose." @default.
- W3049276429 created "2020-08-21" @default.
- W3049276429 creator A5041443865 @default.
- W3049276429 date "2020-09-01" @default.
- W3049276429 modified "2023-10-12" @default.
- W3049276429 title "Is loss of perineuronal nets a critical pathological event in Alzheimer's disease?" @default.
- W3049276429 cites W2044219916 @default.
- W3049276429 cites W2063629979 @default.
- W3049276429 cites W2065637628 @default.
- W3049276429 cites W2336554223 @default.
- W3049276429 cites W2948487620 @default.
- W3049276429 cites W2999706510 @default.
- W3049276429 cites W3022893014 @default.
- W3049276429 doi "https://doi.org/10.1016/j.ebiom.2020.102946" @default.
- W3049276429 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7452426" @default.
- W3049276429 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32810826" @default.
- W3049276429 hasPublicationYear "2020" @default.
- W3049276429 type Work @default.
- W3049276429 sameAs 3049276429 @default.
- W3049276429 citedByCount "9" @default.
- W3049276429 countsByYear W30492764292021 @default.
- W3049276429 countsByYear W30492764292022 @default.
- W3049276429 countsByYear W30492764292023 @default.
- W3049276429 crossrefType "journal-article" @default.
- W3049276429 hasAuthorship W3049276429A5041443865 @default.
- W3049276429 hasBestOaLocation W30492764291 @default.
- W3049276429 hasConcept C121332964 @default.
- W3049276429 hasConcept C129987498 @default.
- W3049276429 hasConcept C142724271 @default.
- W3049276429 hasConcept C169760540 @default.
- W3049276429 hasConcept C207886595 @default.
- W3049276429 hasConcept C2779134260 @default.
- W3049276429 hasConcept C2779662365 @default.
- W3049276429 hasConcept C502032728 @default.
- W3049276429 hasConcept C529278444 @default.
- W3049276429 hasConcept C60644358 @default.
- W3049276429 hasConcept C62520636 @default.
- W3049276429 hasConcept C71924100 @default.
- W3049276429 hasConcept C86803240 @default.
- W3049276429 hasConceptScore W3049276429C121332964 @default.
- W3049276429 hasConceptScore W3049276429C129987498 @default.
- W3049276429 hasConceptScore W3049276429C142724271 @default.
- W3049276429 hasConceptScore W3049276429C169760540 @default.
- W3049276429 hasConceptScore W3049276429C207886595 @default.
- W3049276429 hasConceptScore W3049276429C2779134260 @default.
- W3049276429 hasConceptScore W3049276429C2779662365 @default.
- W3049276429 hasConceptScore W3049276429C502032728 @default.
- W3049276429 hasConceptScore W3049276429C529278444 @default.
- W3049276429 hasConceptScore W3049276429C60644358 @default.
- W3049276429 hasConceptScore W3049276429C62520636 @default.
- W3049276429 hasConceptScore W3049276429C71924100 @default.
- W3049276429 hasConceptScore W3049276429C86803240 @default.
- W3049276429 hasLocation W30492764291 @default.
- W3049276429 hasLocation W30492764292 @default.
- W3049276429 hasOpenAccess W3049276429 @default.
- W3049276429 hasPrimaryLocation W30492764291 @default.
- W3049276429 hasRelatedWork W1917606596 @default.
- W3049276429 hasRelatedWork W1997720118 @default.
- W3049276429 hasRelatedWork W2004384905 @default.
- W3049276429 hasRelatedWork W2074562018 @default.
- W3049276429 hasRelatedWork W2115583627 @default.
- W3049276429 hasRelatedWork W2126017421 @default.
- W3049276429 hasRelatedWork W2911598815 @default.
- W3049276429 hasRelatedWork W2970804367 @default.
- W3049276429 hasRelatedWork W3135478475 @default.
- W3049276429 hasRelatedWork W3166973653 @default.
- W3049276429 hasVolume "59" @default.
- W3049276429 isParatext "false" @default.
- W3049276429 isRetracted "false" @default.
- W3049276429 magId "3049276429" @default.
- W3049276429 workType "article" @default.