Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049279730> ?p ?o ?g. }
- W3049279730 endingPage "41" @default.
- W3049279730 startingPage "27" @default.
- W3049279730 abstract "The rapid increase in automobiles in the recent past has caused an unrestrained escalation of road accidents. Due to road accidents, victims suffer from non-fatal injuries and incurring disabilities. The road accidents have tended many researchers to analyze the severity and type of the accident to enhance road safety measures and aid to speed up the post-crash support amenities. This paper attempts to classify the severity of the accidents by analyzing the accident images. The features of the accident images are extracted using algorithms such as histogram of oriented gradient (HOG), local binary pattern (LBP) and speeded up robust features (SURF). These features are given as input to k-nearest neighbor (KNN) and support vector machine (SVM) to classify the severity of the accidents. The performance of SVM and KNN classifiers with three feature extraction algorithms is assessed and compared. The classification results show that SVM classifier outperformed KNN. SVM with the HOG features shows better accuracy of 79.58% compared to LBP and SURF." @default.
- W3049279730 created "2020-08-21" @default.
- W3049279730 creator A5009722029 @default.
- W3049279730 creator A5018866797 @default.
- W3049279730 creator A5089920040 @default.
- W3049279730 date "2020-08-14" @default.
- W3049279730 modified "2023-10-16" @default.
- W3049279730 title "Classification of Road Accidents Using SVM and KNN" @default.
- W3049279730 cites W1514609038 @default.
- W3049279730 cites W1545641654 @default.
- W3049279730 cites W1573528873 @default.
- W3049279730 cites W1672082250 @default.
- W3049279730 cites W1963944847 @default.
- W3049279730 cites W1998443375 @default.
- W3049279730 cites W2034821857 @default.
- W3049279730 cites W2037787252 @default.
- W3049279730 cites W2039051707 @default.
- W3049279730 cites W2085228654 @default.
- W3049279730 cites W2119605622 @default.
- W3049279730 cites W2121102817 @default.
- W3049279730 cites W2139212933 @default.
- W3049279730 cites W2161969291 @default.
- W3049279730 cites W2167518417 @default.
- W3049279730 cites W2170252635 @default.
- W3049279730 cites W2198346408 @default.
- W3049279730 cites W2405334833 @default.
- W3049279730 cites W2548197316 @default.
- W3049279730 cites W2612282871 @default.
- W3049279730 cites W2782006619 @default.
- W3049279730 cites W2801826233 @default.
- W3049279730 cites W2808133553 @default.
- W3049279730 cites W2808888149 @default.
- W3049279730 cites W2896641569 @default.
- W3049279730 cites W2897805291 @default.
- W3049279730 cites W2921467240 @default.
- W3049279730 cites W2963048283 @default.
- W3049279730 cites W78949383 @default.
- W3049279730 doi "https://doi.org/10.1007/978-981-15-3514-7_3" @default.
- W3049279730 hasPublicationYear "2020" @default.
- W3049279730 type Work @default.
- W3049279730 sameAs 3049279730 @default.
- W3049279730 citedByCount "4" @default.
- W3049279730 countsByYear W30492797302021 @default.
- W3049279730 countsByYear W30492797302022 @default.
- W3049279730 countsByYear W30492797302023 @default.
- W3049279730 crossrefType "book-chapter" @default.
- W3049279730 hasAuthorship W3049279730A5009722029 @default.
- W3049279730 hasAuthorship W3049279730A5018866797 @default.
- W3049279730 hasAuthorship W3049279730A5089920040 @default.
- W3049279730 hasConcept C113238511 @default.
- W3049279730 hasConcept C115961682 @default.
- W3049279730 hasConcept C12267149 @default.
- W3049279730 hasConcept C127413603 @default.
- W3049279730 hasConcept C138885662 @default.
- W3049279730 hasConcept C153180895 @default.
- W3049279730 hasConcept C154945302 @default.
- W3049279730 hasConcept C17426736 @default.
- W3049279730 hasConcept C183469790 @default.
- W3049279730 hasConcept C199360897 @default.
- W3049279730 hasConcept C22212356 @default.
- W3049279730 hasConcept C2776401178 @default.
- W3049279730 hasConcept C2989506057 @default.
- W3049279730 hasConcept C3018122277 @default.
- W3049279730 hasConcept C41008148 @default.
- W3049279730 hasConcept C41895202 @default.
- W3049279730 hasConcept C52622490 @default.
- W3049279730 hasConcept C53533937 @default.
- W3049279730 hasConcept C77595967 @default.
- W3049279730 hasConcept C87335442 @default.
- W3049279730 hasConcept C95623464 @default.
- W3049279730 hasConceptScore W3049279730C113238511 @default.
- W3049279730 hasConceptScore W3049279730C115961682 @default.
- W3049279730 hasConceptScore W3049279730C12267149 @default.
- W3049279730 hasConceptScore W3049279730C127413603 @default.
- W3049279730 hasConceptScore W3049279730C138885662 @default.
- W3049279730 hasConceptScore W3049279730C153180895 @default.
- W3049279730 hasConceptScore W3049279730C154945302 @default.
- W3049279730 hasConceptScore W3049279730C17426736 @default.
- W3049279730 hasConceptScore W3049279730C183469790 @default.
- W3049279730 hasConceptScore W3049279730C199360897 @default.
- W3049279730 hasConceptScore W3049279730C22212356 @default.
- W3049279730 hasConceptScore W3049279730C2776401178 @default.
- W3049279730 hasConceptScore W3049279730C2989506057 @default.
- W3049279730 hasConceptScore W3049279730C3018122277 @default.
- W3049279730 hasConceptScore W3049279730C41008148 @default.
- W3049279730 hasConceptScore W3049279730C41895202 @default.
- W3049279730 hasConceptScore W3049279730C52622490 @default.
- W3049279730 hasConceptScore W3049279730C53533937 @default.
- W3049279730 hasConceptScore W3049279730C77595967 @default.
- W3049279730 hasConceptScore W3049279730C87335442 @default.
- W3049279730 hasConceptScore W3049279730C95623464 @default.
- W3049279730 hasLocation W30492797301 @default.
- W3049279730 hasOpenAccess W3049279730 @default.
- W3049279730 hasPrimaryLocation W30492797301 @default.
- W3049279730 hasRelatedWork W1780126258 @default.
- W3049279730 hasRelatedWork W2085553065 @default.
- W3049279730 hasRelatedWork W2087874231 @default.
- W3049279730 hasRelatedWork W2188464267 @default.