Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049282022> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3049282022 abstract "The stock market is becoming a highly anticipated field of analysis. The data emerging every moment in the stock market globally is in petabyte size. The data analysts are working continuously on the data generated in the stock market to make capital-based predictions. The effort is to predict the future of stocks by using the data and make the best use of the financial environment. The crucial perspective of all the analysis is the generation of the relevant data and through reliable resources. The experiment is dependent on Twitter for the generation of data through its API. The database of one million data used to make an accurate prediction of 75–79%. The use of sentimental analysis, natural language processing, and convolution neural network makes the backbone of the overall research. The benchmark algorithm named STOCKP is an attempt to touch the expected accuracy of the prediction of stock market and make the best monetary stability." @default.
- W3049282022 created "2020-08-21" @default.
- W3049282022 creator A5058716858 @default.
- W3049282022 creator A5064173467 @default.
- W3049282022 creator A5075620562 @default.
- W3049282022 creator A5084311022 @default.
- W3049282022 date "2020-08-14" @default.
- W3049282022 modified "2023-09-25" @default.
- W3049282022 title "Machine Learning Approach to Stock Prediction and Analysis" @default.
- W3049282022 cites W1497571527 @default.
- W3049282022 cites W2015068528 @default.
- W3049282022 cites W2086165910 @default.
- W3049282022 cites W2105159180 @default.
- W3049282022 cites W2114204486 @default.
- W3049282022 cites W2130515272 @default.
- W3049282022 cites W2490277800 @default.
- W3049282022 cites W2546654340 @default.
- W3049282022 cites W2623554537 @default.
- W3049282022 cites W2728164238 @default.
- W3049282022 cites W4230271968 @default.
- W3049282022 cites W4242022374 @default.
- W3049282022 doi "https://doi.org/10.1007/978-981-15-3514-7_68" @default.
- W3049282022 hasPublicationYear "2020" @default.
- W3049282022 type Work @default.
- W3049282022 sameAs 3049282022 @default.
- W3049282022 citedByCount "1" @default.
- W3049282022 countsByYear W30492820222022 @default.
- W3049282022 crossrefType "book-chapter" @default.
- W3049282022 hasAuthorship W3049282022A5058716858 @default.
- W3049282022 hasAuthorship W3049282022A5064173467 @default.
- W3049282022 hasAuthorship W3049282022A5075620562 @default.
- W3049282022 hasAuthorship W3049282022A5084311022 @default.
- W3049282022 hasConcept C124101348 @default.
- W3049282022 hasConcept C127413603 @default.
- W3049282022 hasConcept C149782125 @default.
- W3049282022 hasConcept C151730666 @default.
- W3049282022 hasConcept C154945302 @default.
- W3049282022 hasConcept C162324750 @default.
- W3049282022 hasConcept C204036174 @default.
- W3049282022 hasConcept C2522767166 @default.
- W3049282022 hasConcept C2776256503 @default.
- W3049282022 hasConcept C2780299701 @default.
- W3049282022 hasConcept C2780762169 @default.
- W3049282022 hasConcept C41008148 @default.
- W3049282022 hasConcept C50644808 @default.
- W3049282022 hasConcept C66402592 @default.
- W3049282022 hasConcept C78519656 @default.
- W3049282022 hasConcept C86803240 @default.
- W3049282022 hasConceptScore W3049282022C124101348 @default.
- W3049282022 hasConceptScore W3049282022C127413603 @default.
- W3049282022 hasConceptScore W3049282022C149782125 @default.
- W3049282022 hasConceptScore W3049282022C151730666 @default.
- W3049282022 hasConceptScore W3049282022C154945302 @default.
- W3049282022 hasConceptScore W3049282022C162324750 @default.
- W3049282022 hasConceptScore W3049282022C204036174 @default.
- W3049282022 hasConceptScore W3049282022C2522767166 @default.
- W3049282022 hasConceptScore W3049282022C2776256503 @default.
- W3049282022 hasConceptScore W3049282022C2780299701 @default.
- W3049282022 hasConceptScore W3049282022C2780762169 @default.
- W3049282022 hasConceptScore W3049282022C41008148 @default.
- W3049282022 hasConceptScore W3049282022C50644808 @default.
- W3049282022 hasConceptScore W3049282022C66402592 @default.
- W3049282022 hasConceptScore W3049282022C78519656 @default.
- W3049282022 hasConceptScore W3049282022C86803240 @default.
- W3049282022 hasLocation W30492820221 @default.
- W3049282022 hasOpenAccess W3049282022 @default.
- W3049282022 hasPrimaryLocation W30492820221 @default.
- W3049282022 hasRelatedWork W11991885 @default.
- W3049282022 hasRelatedWork W12236409 @default.
- W3049282022 hasRelatedWork W13380568 @default.
- W3049282022 hasRelatedWork W14506204 @default.
- W3049282022 hasRelatedWork W1688 @default.
- W3049282022 hasRelatedWork W1956582 @default.
- W3049282022 hasRelatedWork W3006012 @default.
- W3049282022 hasRelatedWork W7074178 @default.
- W3049282022 hasRelatedWork W7644393 @default.
- W3049282022 hasRelatedWork W8688885 @default.
- W3049282022 isParatext "false" @default.
- W3049282022 isRetracted "false" @default.
- W3049282022 magId "3049282022" @default.
- W3049282022 workType "book-chapter" @default.