Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049283354> ?p ?o ?g. }
- W3049283354 endingPage "1932" @default.
- W3049283354 startingPage "1922" @default.
- W3049283354 abstract "Structural elucidation is an important and challenging stage in the discovery of new organic molecules. Single-crystal X-ray analysis provides the most unquestionable results, though in practice the availability of suitable crystals limits its broad use. On the other hand, NMR spectroscopy has become the leading and universal technique to accomplish the task. Despite continuous advances in the field, the misinterpretation of NMR data is commonplace, evidenced by the large number of erroneous structures being published in top journals. Quantum calculations of NMR chemical shifts and scalar coupling constants emerged as ideal complements to facilitate the elucidation process when experimental NMR data is inconclusive. Since seminal reports demonstrated that affordable DFT methods provide NMR predictions accurate enough to differentiate among closely related isomers, the discipline has experienced substantial growth. The impact has been felt in different areas, and nowadays the results of such calculations are routinely seen in high impact literature.This Account describes our investigations in the field of quantum NMR calculations, focusing on the development of tools for structural elucidation and practical applications. We pioneered the use of artificial intelligence methods in the development of novel strategies of structural validation. Our first generation of trained artificial neural networks (ANNs) showed excellent ability to identify mistakes at the atom connectivity level, whereas the use of multidimensional pattern recognition pushed the performance to the stereochemical limit. In a conceptually different approach, we developed DP4+, an updated version of the DP4 probability used to determine the most likely structure among two or more candidates when one set of experimental data is available. Increasing the level of theory in NMR calculations and including unscaled data in the formalism improved the performance of the method, further validated to settle the configuration of challenging motifs such as spiroepoxides or Mosher's derivatives. One of the limitations of DP4+ is related to the relatively large computational cost involved in obtaining DFT-optimized geometries, which led to the development of a fast variant including the valuable information provided by coupling constants (J-DP4 method).These tools were explored to suggest the most probable structure of controversial natural or unnatural products originally misassigned, with some predictions further validated by synthesis (as in the case of pseudorubriflordilactone B). The possibility of predicting the structure of a natural product without requiring authentic sample was investigated in collaboration with Prof. Pilli (UNICAMP, Brazil) in the computer-guided total synthesis and stereochemical revisions of several natural products. Despite these advances, there remain considerable challenges, such as the case of configurational assessment of polar systems featuring multiple intramolecular hydrogen bonding interactions because of the poor energy predictions provided by most DFT methods. In our latest work, we tackle this problem by averaging the results provided by randomly generated ensembles, paving the way for a new paradigm in quantum NMR-assisted structural elucidation." @default.
- W3049283354 created "2020-08-21" @default.
- W3049283354 creator A5026925632 @default.
- W3049283354 creator A5045819489 @default.
- W3049283354 creator A5061154316 @default.
- W3049283354 creator A5080245798 @default.
- W3049283354 date "2020-08-14" @default.
- W3049283354 modified "2023-10-11" @default.
- W3049283354 title "NMR Calculations with Quantum Methods: Development of New Tools for Structural Elucidation and Beyond" @default.
- W3049283354 cites W1932807774 @default.
- W3049283354 cites W1933690368 @default.
- W3049283354 cites W1989696154 @default.
- W3049283354 cites W1991650122 @default.
- W3049283354 cites W1994621794 @default.
- W3049283354 cites W1999058114 @default.
- W3049283354 cites W2005674840 @default.
- W3049283354 cites W2005746565 @default.
- W3049283354 cites W2053701172 @default.
- W3049283354 cites W2056199960 @default.
- W3049283354 cites W2058151515 @default.
- W3049283354 cites W2096884546 @default.
- W3049283354 cites W2108209761 @default.
- W3049283354 cites W2111769513 @default.
- W3049283354 cites W2135378924 @default.
- W3049283354 cites W2162135494 @default.
- W3049283354 cites W2227619888 @default.
- W3049283354 cites W2265752746 @default.
- W3049283354 cites W2312195873 @default.
- W3049283354 cites W2313560496 @default.
- W3049283354 cites W2316555981 @default.
- W3049283354 cites W2317455327 @default.
- W3049283354 cites W2318930718 @default.
- W3049283354 cites W2324192335 @default.
- W3049283354 cites W2331759379 @default.
- W3049283354 cites W2343386623 @default.
- W3049283354 cites W2431218509 @default.
- W3049283354 cites W2465478525 @default.
- W3049283354 cites W2517731151 @default.
- W3049283354 cites W2529314456 @default.
- W3049283354 cites W2546870775 @default.
- W3049283354 cites W2551276392 @default.
- W3049283354 cites W2560348032 @default.
- W3049283354 cites W2588492255 @default.
- W3049283354 cites W2599362361 @default.
- W3049283354 cites W2604990227 @default.
- W3049283354 cites W2610735962 @default.
- W3049283354 cites W2615289424 @default.
- W3049283354 cites W2735591225 @default.
- W3049283354 cites W2740603110 @default.
- W3049283354 cites W2749937882 @default.
- W3049283354 cites W2753462628 @default.
- W3049283354 cites W2753820544 @default.
- W3049283354 cites W2766771418 @default.
- W3049283354 cites W2771299260 @default.
- W3049283354 cites W2782713536 @default.
- W3049283354 cites W2783254255 @default.
- W3049283354 cites W2784465059 @default.
- W3049283354 cites W2788952512 @default.
- W3049283354 cites W2792266105 @default.
- W3049283354 cites W2794212217 @default.
- W3049283354 cites W2796078370 @default.
- W3049283354 cites W2796412488 @default.
- W3049283354 cites W2803113828 @default.
- W3049283354 cites W2808437769 @default.
- W3049283354 cites W2884622219 @default.
- W3049283354 cites W2888847831 @default.
- W3049283354 cites W2890366945 @default.
- W3049283354 cites W2892780818 @default.
- W3049283354 cites W2905520504 @default.
- W3049283354 cites W2910474912 @default.
- W3049283354 cites W2912403278 @default.
- W3049283354 cites W2914901310 @default.
- W3049283354 cites W2940015867 @default.
- W3049283354 cites W2941555144 @default.
- W3049283354 cites W2945110298 @default.
- W3049283354 cites W2946988787 @default.
- W3049283354 cites W2947899858 @default.
- W3049283354 cites W2949035169 @default.
- W3049283354 cites W2969906874 @default.
- W3049283354 cites W2979739149 @default.
- W3049283354 cites W2980011270 @default.
- W3049283354 cites W2982496079 @default.
- W3049283354 cites W2991496851 @default.
- W3049283354 cites W2994695081 @default.
- W3049283354 cites W2996478556 @default.
- W3049283354 cites W2998974499 @default.
- W3049283354 cites W2999732413 @default.
- W3049283354 cites W3005023954 @default.
- W3049283354 cites W3010185406 @default.
- W3049283354 cites W3015958540 @default.
- W3049283354 cites W3026116789 @default.
- W3049283354 cites W4230413343 @default.
- W3049283354 doi "https://doi.org/10.1021/acs.accounts.0c00365" @default.
- W3049283354 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32794691" @default.
- W3049283354 hasPublicationYear "2020" @default.
- W3049283354 type Work @default.
- W3049283354 sameAs 3049283354 @default.
- W3049283354 citedByCount "68" @default.