Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049397729> ?p ?o ?g. }
- W3049397729 endingPage "21380" @default.
- W3049397729 startingPage "21373" @default.
- W3049397729 abstract "Cytometry technologies are essential tools for immunology research, providing high-throughput measurements of the immune cells at the single-cell level. Existing approaches in interpreting and using cytometry measurements include manual or automated gating to identify cell subsets from the cytometry data, providing highly intuitive results but may lead to significant information loss, in that additional details in measured or correlated cell signals might be missed. In this study, we propose and test a deep convolutional neural network for analyzing cytometry data in an end-to-end fashion, allowing a direct association between raw cytometry data and the clinical outcome of interest. Using nine large cytometry by time-of-flight mass spectrometry or mass cytometry (CyTOF) studies from the open-access ImmPort database, we demonstrated that the deep convolutional neural network model can accurately diagnose the latent cytomegalovirus (CMV) in healthy individuals, even when using highly heterogeneous data from different studies. In addition, we developed a permutation-based method for interpreting the deep convolutional neural network model. We were able to identify a CD27- CD94+ CD8+ T cell population significantly associated with latent CMV infection, confirming the findings in previous studies. Finally, we provide a tutorial for creating, training, and interpreting the tailored deep learning model for cytometry data using Keras and TensorFlow (https://github.com/hzc363/DeepLearningCyTOF)." @default.
- W3049397729 created "2020-08-21" @default.
- W3049397729 creator A5005448991 @default.
- W3049397729 creator A5036068985 @default.
- W3049397729 creator A5042424043 @default.
- W3049397729 creator A5053491673 @default.
- W3049397729 creator A5081245857 @default.
- W3049397729 date "2020-08-14" @default.
- W3049397729 modified "2023-10-14" @default.
- W3049397729 title "A robust and interpretable end-to-end deep learning model for cytometry data" @default.
- W3049397729 cites W1812005042 @default.
- W3049397729 cites W1908347506 @default.
- W3049397729 cites W1964566606 @default.
- W3049397729 cites W1974769731 @default.
- W3049397729 cites W1989838792 @default.
- W3049397729 cites W1993835819 @default.
- W3049397729 cites W2006192795 @default.
- W3049397729 cites W2014713379 @default.
- W3049397729 cites W2059980695 @default.
- W3049397729 cites W2072723786 @default.
- W3049397729 cites W2108269160 @default.
- W3049397729 cites W2118382376 @default.
- W3049397729 cites W2137079103 @default.
- W3049397729 cites W2143451223 @default.
- W3049397729 cites W2152575655 @default.
- W3049397729 cites W2253429366 @default.
- W3049397729 cites W2282821441 @default.
- W3049397729 cites W2290269515 @default.
- W3049397729 cites W2346039638 @default.
- W3049397729 cites W2576658154 @default.
- W3049397729 cites W2761645446 @default.
- W3049397729 cites W2792468812 @default.
- W3049397729 cites W2804858607 @default.
- W3049397729 cites W2885336572 @default.
- W3049397729 cites W2886484539 @default.
- W3049397729 cites W2888038294 @default.
- W3049397729 cites W2889037189 @default.
- W3049397729 cites W2889103878 @default.
- W3049397729 cites W2919822707 @default.
- W3049397729 cites W2949243209 @default.
- W3049397729 cites W2950612837 @default.
- W3049397729 cites W2950814274 @default.
- W3049397729 cites W2980534007 @default.
- W3049397729 doi "https://doi.org/10.1073/pnas.2003026117" @default.
- W3049397729 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7474669" @default.
- W3049397729 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32801215" @default.
- W3049397729 hasPublicationYear "2020" @default.
- W3049397729 type Work @default.
- W3049397729 sameAs 3049397729 @default.
- W3049397729 citedByCount "31" @default.
- W3049397729 countsByYear W30493977292020 @default.
- W3049397729 countsByYear W30493977292021 @default.
- W3049397729 countsByYear W30493977292022 @default.
- W3049397729 countsByYear W30493977292023 @default.
- W3049397729 crossrefType "journal-article" @default.
- W3049397729 hasAuthorship W3049397729A5005448991 @default.
- W3049397729 hasAuthorship W3049397729A5036068985 @default.
- W3049397729 hasAuthorship W3049397729A5042424043 @default.
- W3049397729 hasAuthorship W3049397729A5053491673 @default.
- W3049397729 hasAuthorship W3049397729A5081245857 @default.
- W3049397729 hasBestOaLocation W30493977291 @default.
- W3049397729 hasConcept C104317684 @default.
- W3049397729 hasConcept C108583219 @default.
- W3049397729 hasConcept C119857082 @default.
- W3049397729 hasConcept C127716648 @default.
- W3049397729 hasConcept C154945302 @default.
- W3049397729 hasConcept C203014093 @default.
- W3049397729 hasConcept C2778015335 @default.
- W3049397729 hasConcept C2780339063 @default.
- W3049397729 hasConcept C2908647359 @default.
- W3049397729 hasConcept C41008148 @default.
- W3049397729 hasConcept C553184892 @default.
- W3049397729 hasConcept C55493867 @default.
- W3049397729 hasConcept C70721500 @default.
- W3049397729 hasConcept C71924100 @default.
- W3049397729 hasConcept C74296488 @default.
- W3049397729 hasConcept C81363708 @default.
- W3049397729 hasConcept C86803240 @default.
- W3049397729 hasConcept C99454951 @default.
- W3049397729 hasConceptScore W3049397729C104317684 @default.
- W3049397729 hasConceptScore W3049397729C108583219 @default.
- W3049397729 hasConceptScore W3049397729C119857082 @default.
- W3049397729 hasConceptScore W3049397729C127716648 @default.
- W3049397729 hasConceptScore W3049397729C154945302 @default.
- W3049397729 hasConceptScore W3049397729C203014093 @default.
- W3049397729 hasConceptScore W3049397729C2778015335 @default.
- W3049397729 hasConceptScore W3049397729C2780339063 @default.
- W3049397729 hasConceptScore W3049397729C2908647359 @default.
- W3049397729 hasConceptScore W3049397729C41008148 @default.
- W3049397729 hasConceptScore W3049397729C553184892 @default.
- W3049397729 hasConceptScore W3049397729C55493867 @default.
- W3049397729 hasConceptScore W3049397729C70721500 @default.
- W3049397729 hasConceptScore W3049397729C71924100 @default.
- W3049397729 hasConceptScore W3049397729C74296488 @default.
- W3049397729 hasConceptScore W3049397729C81363708 @default.
- W3049397729 hasConceptScore W3049397729C86803240 @default.
- W3049397729 hasConceptScore W3049397729C99454951 @default.
- W3049397729 hasFunder F4320337355 @default.