Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049511863> ?p ?o ?g. }
- W3049511863 endingPage "103971" @default.
- W3049511863 startingPage "103971" @default.
- W3049511863 abstract "Next Generation Sequencing (NGS) technologies have revolutionized genomics data research over the last decades by facilitating high-throughput sequencing of genetic material such as RNA Sequencing (RNAseq). A significant challenge is to explore innovative methods for further exploitation of these large-scale datasets. The approach described in this paper utilizes the results of RNAseq analysis to identify biomarkers related to the disease and deploy a disease outcome predictive model. Chronic Lymphocytic Leukemia (CLL) was used as an example in the implementation of this approach. The approach proposed follows this methodology: (1) Analysis of RNAseq raw data, (2) Construction of a gene correlation network, (3) Identification of modules and hub genes in this network, which constitute the features for the classification algorithm, (4) Deployment of an efficient predictive model, with the use of state-of-the-art machine learning techniques and the association of the indicators with the clinical information. The features/hub genes finally selected were 25 in total and were used as the input to the classifiers. The models, then, were validated leading to very satisfactory results, with the best performing of them achieving 95% cross-validation and 93,75% external validation accuracy. Concluding, this exploratory data-driven approach attempts to make use of big genomic data by summarizing them in a way that is more understandable and facilitates their use by other techniques, such as Machine Learning. This method manages to extract a gene set that can predict the disease progression. The validation results of the proposed data-driven predictive models are very promising and constitute a significant contribution to medical research and personalized medicine." @default.
- W3049511863 created "2020-08-21" @default.
- W3049511863 creator A5038527401 @default.
- W3049511863 creator A5078023454 @default.
- W3049511863 creator A5078538646 @default.
- W3049511863 date "2020-10-01" @default.
- W3049511863 modified "2023-10-09" @default.
- W3049511863 title "A data-driven approach to build a predictive model of cancer patients' disease outcome by utilizing co-expression networks" @default.
- W3049511863 cites W1564039428 @default.
- W3049511863 cites W1966327575 @default.
- W3049511863 cites W1977186288 @default.
- W3049511863 cites W1980575079 @default.
- W3049511863 cites W1981509058 @default.
- W3049511863 cites W1989119979 @default.
- W3049511863 cites W2030552690 @default.
- W3049511863 cites W2074299722 @default.
- W3049511863 cites W2097065948 @default.
- W3049511863 cites W2100305481 @default.
- W3049511863 cites W2104724027 @default.
- W3049511863 cites W2113895281 @default.
- W3049511863 cites W2122889774 @default.
- W3049511863 cites W2130410032 @default.
- W3049511863 cites W2133465414 @default.
- W3049511863 cites W2141458291 @default.
- W3049511863 cites W2143426320 @default.
- W3049511863 cites W2144430639 @default.
- W3049511863 cites W2156131696 @default.
- W3049511863 cites W2558509262 @default.
- W3049511863 cites W2611463039 @default.
- W3049511863 cites W2900177908 @default.
- W3049511863 cites W2911983111 @default.
- W3049511863 cites W2916897461 @default.
- W3049511863 cites W2945253629 @default.
- W3049511863 cites W2972638668 @default.
- W3049511863 cites W2986044976 @default.
- W3049511863 doi "https://doi.org/10.1016/j.compbiomed.2020.103971" @default.
- W3049511863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32861050" @default.
- W3049511863 hasPublicationYear "2020" @default.
- W3049511863 type Work @default.
- W3049511863 sameAs 3049511863 @default.
- W3049511863 citedByCount "4" @default.
- W3049511863 countsByYear W30495118632021 @default.
- W3049511863 countsByYear W30495118632022 @default.
- W3049511863 countsByYear W30495118632023 @default.
- W3049511863 crossrefType "journal-article" @default.
- W3049511863 hasAuthorship W3049511863A5038527401 @default.
- W3049511863 hasAuthorship W3049511863A5078023454 @default.
- W3049511863 hasAuthorship W3049511863A5078538646 @default.
- W3049511863 hasConcept C104317684 @default.
- W3049511863 hasConcept C105339364 @default.
- W3049511863 hasConcept C111919701 @default.
- W3049511863 hasConcept C116834253 @default.
- W3049511863 hasConcept C119857082 @default.
- W3049511863 hasConcept C124101348 @default.
- W3049511863 hasConcept C132964779 @default.
- W3049511863 hasConcept C141231307 @default.
- W3049511863 hasConcept C154945302 @default.
- W3049511863 hasConcept C177264268 @default.
- W3049511863 hasConcept C189206191 @default.
- W3049511863 hasConcept C199360897 @default.
- W3049511863 hasConcept C41008148 @default.
- W3049511863 hasConcept C45804977 @default.
- W3049511863 hasConcept C55493867 @default.
- W3049511863 hasConcept C59822182 @default.
- W3049511863 hasConcept C75684735 @default.
- W3049511863 hasConcept C86803240 @default.
- W3049511863 hasConceptScore W3049511863C104317684 @default.
- W3049511863 hasConceptScore W3049511863C105339364 @default.
- W3049511863 hasConceptScore W3049511863C111919701 @default.
- W3049511863 hasConceptScore W3049511863C116834253 @default.
- W3049511863 hasConceptScore W3049511863C119857082 @default.
- W3049511863 hasConceptScore W3049511863C124101348 @default.
- W3049511863 hasConceptScore W3049511863C132964779 @default.
- W3049511863 hasConceptScore W3049511863C141231307 @default.
- W3049511863 hasConceptScore W3049511863C154945302 @default.
- W3049511863 hasConceptScore W3049511863C177264268 @default.
- W3049511863 hasConceptScore W3049511863C189206191 @default.
- W3049511863 hasConceptScore W3049511863C199360897 @default.
- W3049511863 hasConceptScore W3049511863C41008148 @default.
- W3049511863 hasConceptScore W3049511863C45804977 @default.
- W3049511863 hasConceptScore W3049511863C55493867 @default.
- W3049511863 hasConceptScore W3049511863C59822182 @default.
- W3049511863 hasConceptScore W3049511863C75684735 @default.
- W3049511863 hasConceptScore W3049511863C86803240 @default.
- W3049511863 hasLocation W30495118631 @default.
- W3049511863 hasOpenAccess W3049511863 @default.
- W3049511863 hasPrimaryLocation W30495118631 @default.
- W3049511863 hasRelatedWork W2021850411 @default.
- W3049511863 hasRelatedWork W2734587838 @default.
- W3049511863 hasRelatedWork W2961085424 @default.
- W3049511863 hasRelatedWork W3014300295 @default.
- W3049511863 hasRelatedWork W3111142340 @default.
- W3049511863 hasRelatedWork W3160244858 @default.
- W3049511863 hasRelatedWork W4246751904 @default.
- W3049511863 hasRelatedWork W4306674287 @default.
- W3049511863 hasRelatedWork W4312263439 @default.
- W3049511863 hasRelatedWork W4323546569 @default.
- W3049511863 hasVolume "125" @default.