Matches in SemOpenAlex for { <https://semopenalex.org/work/W30495605> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W30495605 abstract "The main goal of this research is to improve interoperability between different information sources. Since ontologies, collections of concepts and their interrelationships, have become a synonym for the solution to many problems resulting from computers' inability to understand natural language, they can capture the semantics of diverse representations in heterogeneous information sources. Thus, ontologies can facilitate the identification of semantic matching between the different representations. Therefore, this dissertation studies the role of ontologies in semantic matching structured data and a method of building ontologies for the semantic matching.One of the critical problems in the federation of information sources is that similar domains have been expressed in different manners. To address this problem, this dissertation presents an ontology-based federation of heterogeneous information sources. We define a simple yet powerful representation model for structuring ontology which can extract canonical representation from a broad range of meta data models, including relational databases, XML, RDF, OWL, and DAML+OIL.The second major problem in the federation is that similar domains also have been expressed in diverse terminologies by domain experts who typically have their own interpretations of the domain. To tackle this problem, we incorporate ontologies to identify matches among different terminologies. Since ontologies play a key role in knowledge management by providing solutions to many problems resulting from computers' inability to understand natural language, they can facilitate the identification of semantic matching between the different representations. The basic idea in computing the semantic similarity is that similar concepts share a more specific common parent.As many thousands of articles are published daily on the Web, neologisms or domain-specific terms appear as time passes. Thus, the third major problem in the federation is that the employment of out-of-date ontologies may decrease the accuracy of our matching framework. Also, the ontology learning process where traditional clustering algorithms are involved tends to be slow and computationally expensive when the dataset is as large as the Web. Therefore, it is essential to maintain ontologies to reflect up-to-date knowledge. To address this problem, we present an efficient concept clustering technique for ontology learning that reduces the number of required pairwise term similarity computations without a loss of quality.This study makes three major contributions. The first contribution is a solution architecture that resolves conflicts in the semantics of existing information sources. The second major contribution of the research is a solution to automatically create semantic mappings. The another important contribution of this dissertation is to provide a well-founded, rapid ontology learning framework based on the reduction of the use of the expensive measure by pre-clustering a large dataset. Our approach can be coupled with any type of federating, matching, clustering methods and can be utilized for making algorithms scalable with respect to the millions of information sources and documents. Therefore, this dissertation has contributed to both understanding the integrating problem on diverse information sources and developing matching framework using ontologies." @default.
- W30495605 created "2016-06-24" @default.
- W30495605 creator A5027706834 @default.
- W30495605 creator A5090330984 @default.
- W30495605 date "2007-01-01" @default.
- W30495605 modified "2023-09-23" @default.
- W30495605 title "Ontology-based semantic integration of heterogeneous information sources" @default.
- W30495605 hasPublicationYear "2007" @default.
- W30495605 type Work @default.
- W30495605 sameAs 30495605 @default.
- W30495605 citedByCount "0" @default.
- W30495605 crossrefType "journal-article" @default.
- W30495605 hasAuthorship W30495605A5027706834 @default.
- W30495605 hasAuthorship W30495605A5090330984 @default.
- W30495605 hasConcept C102993220 @default.
- W30495605 hasConcept C110903229 @default.
- W30495605 hasConcept C111472728 @default.
- W30495605 hasConcept C138885662 @default.
- W30495605 hasConcept C154210476 @default.
- W30495605 hasConcept C154945302 @default.
- W30495605 hasConcept C161301231 @default.
- W30495605 hasConcept C184337299 @default.
- W30495605 hasConcept C199360897 @default.
- W30495605 hasConcept C2129575 @default.
- W30495605 hasConcept C22550185 @default.
- W30495605 hasConcept C23123220 @default.
- W30495605 hasConcept C25810664 @default.
- W30495605 hasConcept C2778180026 @default.
- W30495605 hasConcept C41008148 @default.
- W30495605 hasConcept C511149849 @default.
- W30495605 hasConcept C78726541 @default.
- W30495605 hasConcept C98893333 @default.
- W30495605 hasConceptScore W30495605C102993220 @default.
- W30495605 hasConceptScore W30495605C110903229 @default.
- W30495605 hasConceptScore W30495605C111472728 @default.
- W30495605 hasConceptScore W30495605C138885662 @default.
- W30495605 hasConceptScore W30495605C154210476 @default.
- W30495605 hasConceptScore W30495605C154945302 @default.
- W30495605 hasConceptScore W30495605C161301231 @default.
- W30495605 hasConceptScore W30495605C184337299 @default.
- W30495605 hasConceptScore W30495605C199360897 @default.
- W30495605 hasConceptScore W30495605C2129575 @default.
- W30495605 hasConceptScore W30495605C22550185 @default.
- W30495605 hasConceptScore W30495605C23123220 @default.
- W30495605 hasConceptScore W30495605C25810664 @default.
- W30495605 hasConceptScore W30495605C2778180026 @default.
- W30495605 hasConceptScore W30495605C41008148 @default.
- W30495605 hasConceptScore W30495605C511149849 @default.
- W30495605 hasConceptScore W30495605C78726541 @default.
- W30495605 hasConceptScore W30495605C98893333 @default.
- W30495605 hasLocation W304956051 @default.
- W30495605 hasOpenAccess W30495605 @default.
- W30495605 hasPrimaryLocation W304956051 @default.
- W30495605 hasRelatedWork W1546861626 @default.
- W30495605 hasRelatedWork W1580859975 @default.
- W30495605 hasRelatedWork W1929126584 @default.
- W30495605 hasRelatedWork W2037248861 @default.
- W30495605 hasRelatedWork W2122405755 @default.
- W30495605 hasRelatedWork W2133662709 @default.
- W30495605 hasRelatedWork W2148572968 @default.
- W30495605 hasRelatedWork W2221609752 @default.
- W30495605 hasRelatedWork W2292555854 @default.
- W30495605 hasRelatedWork W2332303036 @default.
- W30495605 hasRelatedWork W2463453101 @default.
- W30495605 hasRelatedWork W2469397162 @default.
- W30495605 hasRelatedWork W2550788753 @default.
- W30495605 hasRelatedWork W2611894836 @default.
- W30495605 hasRelatedWork W3015652569 @default.
- W30495605 hasRelatedWork W3099913896 @default.
- W30495605 hasRelatedWork W3115438101 @default.
- W30495605 hasRelatedWork W3158232552 @default.
- W30495605 hasRelatedWork W2186037514 @default.
- W30495605 hasRelatedWork W2246897938 @default.
- W30495605 isParatext "false" @default.
- W30495605 isRetracted "false" @default.
- W30495605 magId "30495605" @default.
- W30495605 workType "article" @default.