Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049595513> ?p ?o ?g. }
- W3049595513 abstract "Self-sustained, elevated neuronal activity persisting on timescales of 10 s or longer is thought to be vital for aspects of working memory, including brain representations of real space. Continuous-attractor neural networks, one of the most well-known modeling frameworks for persistent activity, have been able to model crucial aspects of such spatial memory. These models tend to require highly structured or regular synaptic architectures. In contrast, we study numerical simulations of a geometrically embedded model with a local, but otherwise random, connectivity profile; imposing a global regulation of our system's mean firing rate produces localized, finely spaced discrete attractors that effectively span a two-dimensional manifold. We demonstrate how the set of attracting states can reliably encode a representation of the spatial locations at which the system receives external input, thereby accomplishing spatial memory via attractor dynamics without synaptic fine-tuning or regular structure. We then measure the network's storage capacity numerically and find that the statistics of retrievable positions are also equivalent to a full tiling of the plane, something hitherto achievable only with (approximately) translationally invariant synapses, and which may be of interest in modeling such biological phenomena as visuospatial working memory in two dimensions." @default.
- W3049595513 created "2020-08-21" @default.
- W3049595513 creator A5004470051 @default.
- W3049595513 creator A5022198472 @default.
- W3049595513 creator A5052018927 @default.
- W3049595513 date "2020-08-13" @default.
- W3049595513 modified "2023-10-18" @default.
- W3049595513 title "Precise spatial memory in local random networks" @default.
- W3049595513 cites W1536844165 @default.
- W3049595513 cites W1569395231 @default.
- W3049595513 cites W1939596644 @default.
- W3049595513 cites W1974644418 @default.
- W3049595513 cites W1985392528 @default.
- W3049595513 cites W1989512479 @default.
- W3049595513 cites W1995138356 @default.
- W3049595513 cites W1995875735 @default.
- W3049595513 cites W2008284899 @default.
- W3049595513 cites W2014966184 @default.
- W3049595513 cites W2025054170 @default.
- W3049595513 cites W2029374903 @default.
- W3049595513 cites W2029487195 @default.
- W3049595513 cites W2029535537 @default.
- W3049595513 cites W2030221612 @default.
- W3049595513 cites W2031534534 @default.
- W3049595513 cites W2033742127 @default.
- W3049595513 cites W2035363223 @default.
- W3049595513 cites W2036616001 @default.
- W3049595513 cites W2037287139 @default.
- W3049595513 cites W2037990198 @default.
- W3049595513 cites W2057755457 @default.
- W3049595513 cites W2070900790 @default.
- W3049595513 cites W2076466993 @default.
- W3049595513 cites W2076919983 @default.
- W3049595513 cites W2079600283 @default.
- W3049595513 cites W2084568377 @default.
- W3049595513 cites W2093356195 @default.
- W3049595513 cites W2096247801 @default.
- W3049595513 cites W2101985079 @default.
- W3049595513 cites W2103179919 @default.
- W3049595513 cites W2104681180 @default.
- W3049595513 cites W2109584604 @default.
- W3049595513 cites W2113345172 @default.
- W3049595513 cites W2114771311 @default.
- W3049595513 cites W2128084896 @default.
- W3049595513 cites W2138128929 @default.
- W3049595513 cites W2153201079 @default.
- W3049595513 cites W2157518752 @default.
- W3049595513 cites W2165443127 @default.
- W3049595513 cites W2167809052 @default.
- W3049595513 cites W2235360886 @default.
- W3049595513 cites W2260407442 @default.
- W3049595513 cites W2610861664 @default.
- W3049595513 cites W2617413315 @default.
- W3049595513 cites W2618420889 @default.
- W3049595513 cites W2768034240 @default.
- W3049595513 cites W2806269616 @default.
- W3049595513 cites W2885859974 @default.
- W3049595513 cites W2888531822 @default.
- W3049595513 cites W2901964888 @default.
- W3049595513 cites W2912119762 @default.
- W3049595513 cites W2951061187 @default.
- W3049595513 cites W2953091345 @default.
- W3049595513 cites W2965831377 @default.
- W3049595513 cites W3023466799 @default.
- W3049595513 cites W3099224472 @default.
- W3049595513 cites W4211217667 @default.
- W3049595513 cites W4231081240 @default.
- W3049595513 cites W902799380 @default.
- W3049595513 doi "https://doi.org/10.1103/physreve.102.022405" @default.
- W3049595513 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32942429" @default.
- W3049595513 hasPublicationYear "2020" @default.
- W3049595513 type Work @default.
- W3049595513 sameAs 3049595513 @default.
- W3049595513 citedByCount "0" @default.
- W3049595513 crossrefType "journal-article" @default.
- W3049595513 hasAuthorship W3049595513A5004470051 @default.
- W3049595513 hasAuthorship W3049595513A5022198472 @default.
- W3049595513 hasAuthorship W3049595513A5052018927 @default.
- W3049595513 hasBestOaLocation W30495955132 @default.
- W3049595513 hasConcept C104317684 @default.
- W3049595513 hasConcept C114614502 @default.
- W3049595513 hasConcept C121332964 @default.
- W3049595513 hasConcept C121864883 @default.
- W3049595513 hasConcept C134306372 @default.
- W3049595513 hasConcept C164380108 @default.
- W3049595513 hasConcept C17744445 @default.
- W3049595513 hasConcept C184720557 @default.
- W3049595513 hasConcept C185592680 @default.
- W3049595513 hasConcept C190470478 @default.
- W3049595513 hasConcept C199539241 @default.
- W3049595513 hasConcept C2776359362 @default.
- W3049595513 hasConcept C33923547 @default.
- W3049595513 hasConcept C37914503 @default.
- W3049595513 hasConcept C41008148 @default.
- W3049595513 hasConcept C55493867 @default.
- W3049595513 hasConcept C66746571 @default.
- W3049595513 hasConcept C94625758 @default.
- W3049595513 hasConceptScore W3049595513C104317684 @default.
- W3049595513 hasConceptScore W3049595513C114614502 @default.
- W3049595513 hasConceptScore W3049595513C121332964 @default.