Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049612666> ?p ?o ?g. }
- W3049612666 endingPage "150737" @default.
- W3049612666 startingPage "150725" @default.
- W3049612666 abstract "Skin cancer is one of the most common cancers in the world. However, the disease is curable if detected in the beginning stage. Early detection of malignant lesions through accurate techniques and innovative technologies has a significant impact on reducing skin cancer mortality rates. Recently, artificial intelligence has come to the forefront to facilitate skin cancer diagnosis based on medical images. Many deep learning models have been studied and developed, but the imbalance of performance among classes in the multi-class classification is still a challenging problem. This study proposes a hybrid method for handling class imbalance of skin-disease classification. This method combines the data level method of balanced mini-batch logic followed by real-time image augmentation with the algorithm level method of designing new loss function. The training dataset includes 24,530 dermoscopic images of seven skin disease categories, which is by far the largest dataset of skin cancer. The performance metrics of six proposed methods are evaluated on a test dataset of 2,453 images. Our proposed EfficientNetB4-CLF model achieves the highest accuracy of 89.97% and also the highest mean recall of 86.13% with the smallest recalls' standard deviations of 7.60%. Compared to the original methods, our proposed solution not only surpasses 4.65% (86.13% vs 81.48%) of mean recalls but also reduces 4.24% of the recalls' standard deviations (from ±11.84% to ±7.60%). This result indicates that our hybrid method is highly effective in training the Deep CNN network on the skin-disease imbalanced dataset. It addresses the problem of slow learning of the minority classes in the networks by combining the data level method of balanced mini-batch logic followed by the real-time image augmentation with the algorithm level method of the newly designed loss function." @default.
- W3049612666 created "2020-08-21" @default.
- W3049612666 creator A5001532275 @default.
- W3049612666 creator A5026818330 @default.
- W3049612666 creator A5033491986 @default.
- W3049612666 creator A5036304904 @default.
- W3049612666 creator A5076852263 @default.
- W3049612666 date "2020-01-01" @default.
- W3049612666 modified "2023-10-15" @default.
- W3049612666 title "Improving Skin-Disease Classification Based on Customized Loss Function Combined With Balanced Mini-Batch Logic and Real-Time Image Augmentation" @default.
- W3049612666 cites W1498436455 @default.
- W3049612666 cites W1996828958 @default.
- W3049612666 cites W2016173422 @default.
- W3049612666 cites W2061576204 @default.
- W3049612666 cites W2142402086 @default.
- W3049612666 cites W2183341477 @default.
- W3049612666 cites W2194775991 @default.
- W3049612666 cites W2513863019 @default.
- W3049612666 cites W2551429935 @default.
- W3049612666 cites W2581082771 @default.
- W3049612666 cites W2757940437 @default.
- W3049612666 cites W2766742395 @default.
- W3049612666 cites W2781631989 @default.
- W3049612666 cites W2789357239 @default.
- W3049612666 cites W2806853752 @default.
- W3049612666 cites W2829536470 @default.
- W3049612666 cites W2884561390 @default.
- W3049612666 cites W2892053105 @default.
- W3049612666 cites W2903060508 @default.
- W3049612666 cites W2915337192 @default.
- W3049612666 cites W2917303411 @default.
- W3049612666 cites W2919115771 @default.
- W3049612666 cites W2921785317 @default.
- W3049612666 cites W2928048063 @default.
- W3049612666 cites W2937742783 @default.
- W3049612666 cites W2943964494 @default.
- W3049612666 cites W2959684014 @default.
- W3049612666 cites W2963446712 @default.
- W3049612666 cites W2964050365 @default.
- W3049612666 cites W2964054038 @default.
- W3049612666 cites W2971897287 @default.
- W3049612666 cites W2972176792 @default.
- W3049612666 cites W2989431519 @default.
- W3049612666 cites W3000638052 @default.
- W3049612666 cites W3004071755 @default.
- W3049612666 cites W3008089047 @default.
- W3049612666 cites W3014829836 @default.
- W3049612666 cites W4211127241 @default.
- W3049612666 cites W4211223138 @default.
- W3049612666 doi "https://doi.org/10.1109/access.2020.3016653" @default.
- W3049612666 hasPublicationYear "2020" @default.
- W3049612666 type Work @default.
- W3049612666 sameAs 3049612666 @default.
- W3049612666 citedByCount "28" @default.
- W3049612666 countsByYear W30496126662021 @default.
- W3049612666 countsByYear W30496126662022 @default.
- W3049612666 countsByYear W30496126662023 @default.
- W3049612666 crossrefType "journal-article" @default.
- W3049612666 hasAuthorship W3049612666A5001532275 @default.
- W3049612666 hasAuthorship W3049612666A5026818330 @default.
- W3049612666 hasAuthorship W3049612666A5033491986 @default.
- W3049612666 hasAuthorship W3049612666A5036304904 @default.
- W3049612666 hasAuthorship W3049612666A5076852263 @default.
- W3049612666 hasBestOaLocation W30496126661 @default.
- W3049612666 hasConcept C115961682 @default.
- W3049612666 hasConcept C14036430 @default.
- W3049612666 hasConcept C154945302 @default.
- W3049612666 hasConcept C31972630 @default.
- W3049612666 hasConcept C41008148 @default.
- W3049612666 hasConcept C75294576 @default.
- W3049612666 hasConcept C78458016 @default.
- W3049612666 hasConcept C86803240 @default.
- W3049612666 hasConceptScore W3049612666C115961682 @default.
- W3049612666 hasConceptScore W3049612666C14036430 @default.
- W3049612666 hasConceptScore W3049612666C154945302 @default.
- W3049612666 hasConceptScore W3049612666C31972630 @default.
- W3049612666 hasConceptScore W3049612666C41008148 @default.
- W3049612666 hasConceptScore W3049612666C75294576 @default.
- W3049612666 hasConceptScore W3049612666C78458016 @default.
- W3049612666 hasConceptScore W3049612666C86803240 @default.
- W3049612666 hasLocation W30496126661 @default.
- W3049612666 hasLocation W30496126662 @default.
- W3049612666 hasOpenAccess W3049612666 @default.
- W3049612666 hasPrimaryLocation W30496126661 @default.
- W3049612666 hasRelatedWork W1891287906 @default.
- W3049612666 hasRelatedWork W1969923398 @default.
- W3049612666 hasRelatedWork W2036807459 @default.
- W3049612666 hasRelatedWork W2130228941 @default.
- W3049612666 hasRelatedWork W2161229648 @default.
- W3049612666 hasRelatedWork W2166024367 @default.
- W3049612666 hasRelatedWork W2772917594 @default.
- W3049612666 hasRelatedWork W2775347418 @default.
- W3049612666 hasRelatedWork W2993674027 @default.
- W3049612666 hasRelatedWork W4312538239 @default.
- W3049612666 hasVolume "8" @default.
- W3049612666 isParatext "false" @default.
- W3049612666 isRetracted "false" @default.
- W3049612666 magId "3049612666" @default.