Matches in SemOpenAlex for { <https://semopenalex.org/work/W3051446910> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3051446910 endingPage "153249" @default.
- W3051446910 startingPage "153240" @default.
- W3051446910 abstract "With the rapid increase in the development of a cellular communication system, remote health monitoring and smart health care are improving and getting through a swift transformation. Currently, we are utilizing the advance long term evolution (A-LTE) network to support the modern health care. Nevertheless, smart hospital/health concern is not fully evolved all around the world. The rollout of the fifth generation (5G) will improve the standard of the smart health care. However, requirements of a smart hospital will be different as compared to other applications such as education, industries, and the public. The smart hospital will be connected 24/7, with several small devices integrated with the sensors. In simple words, the future smart hospital will be based on the 5G and the internet of things (IoT), expected to augment the system coverage, effectiveness, and throughput of the system. Further, high speed, low latency, spectral efficiency, and low energy consumption are the requirements of the 5G based modern hospital. In this correspondence, we focused to improve the latency, spectrum, and throughput of the 5G network by implementing a hybrid detection technique based on the QR decomposition and the M algorithm-maximum likelihood detection (QRM-MLD) and beamforming (BF) for massive multiple-input multiple-output (MIMO) and non-orthogonal multiple access (NOMA) system. In addition, a comparison between the proposed and conventional detection techniques is presented. The proposed hybrid detection technique improves the throughput of the system and reduces the computational complexity as compared to the conventional QRM-MLD algorithm, conventional BF and zero-forcing (ZF) techniques on the platform of several parameters i.e. complexity, bit error rate (BER), peak power, etc." @default.
- W3051446910 created "2020-08-24" @default.
- W3051446910 creator A5013381682 @default.
- W3051446910 creator A5030998001 @default.
- W3051446910 creator A5045189165 @default.
- W3051446910 creator A5061114146 @default.
- W3051446910 creator A5069821851 @default.
- W3051446910 date "2020-01-01" @default.
- W3051446910 modified "2023-10-17" @default.
- W3051446910 title "Future 5G Network Based Smart Hospitals: Hybrid Detection Technique for Latency Improvement" @default.
- W3051446910 cites W1599906721 @default.
- W3051446910 cites W2075505133 @default.
- W3051446910 cites W2121733881 @default.
- W3051446910 cites W2130933062 @default.
- W3051446910 cites W2145911207 @default.
- W3051446910 cites W2156077514 @default.
- W3051446910 cites W2473960014 @default.
- W3051446910 cites W2551559488 @default.
- W3051446910 cites W2590158042 @default.
- W3051446910 cites W2598898897 @default.
- W3051446910 cites W2621295973 @default.
- W3051446910 cites W2782666205 @default.
- W3051446910 cites W2795406860 @default.
- W3051446910 cites W2912221037 @default.
- W3051446910 cites W2966412831 @default.
- W3051446910 cites W2966932878 @default.
- W3051446910 cites W2980515945 @default.
- W3051446910 cites W2980986512 @default.
- W3051446910 cites W2983921066 @default.
- W3051446910 cites W2989401941 @default.
- W3051446910 cites W2993874970 @default.
- W3051446910 cites W3009625135 @default.
- W3051446910 cites W3018474795 @default.
- W3051446910 cites W3022570414 @default.
- W3051446910 cites W3106282754 @default.
- W3051446910 doi "https://doi.org/10.1109/access.2020.3017625" @default.
- W3051446910 hasPublicationYear "2020" @default.
- W3051446910 type Work @default.
- W3051446910 sameAs 3051446910 @default.
- W3051446910 citedByCount "39" @default.
- W3051446910 countsByYear W30514469102020 @default.
- W3051446910 countsByYear W30514469102021 @default.
- W3051446910 countsByYear W30514469102022 @default.
- W3051446910 countsByYear W30514469102023 @default.
- W3051446910 crossrefType "journal-article" @default.
- W3051446910 hasAuthorship W3051446910A5013381682 @default.
- W3051446910 hasAuthorship W3051446910A5030998001 @default.
- W3051446910 hasAuthorship W3051446910A5045189165 @default.
- W3051446910 hasAuthorship W3051446910A5061114146 @default.
- W3051446910 hasAuthorship W3051446910A5069821851 @default.
- W3051446910 hasBestOaLocation W30514469101 @default.
- W3051446910 hasConcept C31258907 @default.
- W3051446910 hasConcept C41008148 @default.
- W3051446910 hasConcept C76155785 @default.
- W3051446910 hasConcept C82876162 @default.
- W3051446910 hasConceptScore W3051446910C31258907 @default.
- W3051446910 hasConceptScore W3051446910C41008148 @default.
- W3051446910 hasConceptScore W3051446910C76155785 @default.
- W3051446910 hasConceptScore W3051446910C82876162 @default.
- W3051446910 hasLocation W30514469101 @default.
- W3051446910 hasLocation W30514469102 @default.
- W3051446910 hasOpenAccess W3051446910 @default.
- W3051446910 hasPrimaryLocation W30514469101 @default.
- W3051446910 hasRelatedWork W1485152215 @default.
- W3051446910 hasRelatedWork W1537299347 @default.
- W3051446910 hasRelatedWork W1987753576 @default.
- W3051446910 hasRelatedWork W2005547481 @default.
- W3051446910 hasRelatedWork W2130966263 @default.
- W3051446910 hasRelatedWork W2361812906 @default.
- W3051446910 hasRelatedWork W2380362089 @default.
- W3051446910 hasRelatedWork W2393954573 @default.
- W3051446910 hasRelatedWork W3033499831 @default.
- W3051446910 hasRelatedWork W2779562428 @default.
- W3051446910 hasVolume "8" @default.
- W3051446910 isParatext "false" @default.
- W3051446910 isRetracted "false" @default.
- W3051446910 magId "3051446910" @default.
- W3051446910 workType "article" @default.