Matches in SemOpenAlex for { <https://semopenalex.org/work/W3052387422> ?p ?o ?g. }
- W3052387422 endingPage "6749" @default.
- W3052387422 startingPage "6749" @default.
- W3052387422 abstract "Modelling of comfort with the use of neural networks in modern times has become extremely popular. In recent years, scientists have been using these methods because of their satisfactory accuracy. The article proposes a method of modelling feedforward neural networks, thanks to which it is possible to obtain the most efficient network with one hidden layer in terms of a given quality criterion. The article also presents the methodology for modelling a PMV index, on the basis of which it can be demonstrated whether the network will work properly not only on paper but in reality as well. The objective of this work is to develop a performance model allowing the effective improvement of all electrical and mechanical devices affecting the energy efficiency and indoor environment in smart buildings. To achieve this, several attributes of indoor environment are included, namely: air leakage as a connection to the outdoor environment, but also as uncontrolled component of energy, ventilation as delivery and distribution of fresh air in the building space, individual ventilation on demand indoor air quality (IAQ) in the dwelling or as a personal IAQ control, source control of pollutants in the building, thermal comfort, temperature, air movement and humidity control (humidity modifiers, i.e., buffers different from the air conditioning radiation from cold and hot surfaces bringing forward a question about the strategy of the process control. One may either develop a series of control models to be synthesized later or one can use one over-arching characteristic and use its components for operating the control system. The paper addresses the second strategy and uses the concept of PMV for a criterion of broadly defined thermal comfort (including ventilation and air quality)." @default.
- W3052387422 created "2020-08-24" @default.
- W3052387422 creator A5060310967 @default.
- W3052387422 date "2020-08-20" @default.
- W3052387422 modified "2023-09-25" @default.
- W3052387422 title "Towards Characterization of Indoor Environment in Smart Buildings: Modelling PMV Index Using Neural Network with One Hidden Layer" @default.
- W3052387422 cites W1582555728 @default.
- W3052387422 cites W1959952681 @default.
- W3052387422 cites W1979015823 @default.
- W3052387422 cites W1993811280 @default.
- W3052387422 cites W2003725769 @default.
- W3052387422 cites W2019115281 @default.
- W3052387422 cites W2022214257 @default.
- W3052387422 cites W2024495474 @default.
- W3052387422 cites W2034877045 @default.
- W3052387422 cites W2041475319 @default.
- W3052387422 cites W2043375348 @default.
- W3052387422 cites W2043871169 @default.
- W3052387422 cites W2049527112 @default.
- W3052387422 cites W2061637640 @default.
- W3052387422 cites W2074787411 @default.
- W3052387422 cites W2079663394 @default.
- W3052387422 cites W2085969476 @default.
- W3052387422 cites W2087309216 @default.
- W3052387422 cites W2090859261 @default.
- W3052387422 cites W2092910485 @default.
- W3052387422 cites W2107186450 @default.
- W3052387422 cites W2127964622 @default.
- W3052387422 cites W2152365410 @default.
- W3052387422 cites W2156302255 @default.
- W3052387422 cites W2159200188 @default.
- W3052387422 cites W2183145425 @default.
- W3052387422 cites W2316392169 @default.
- W3052387422 cites W2557084495 @default.
- W3052387422 cites W2619263898 @default.
- W3052387422 cites W2724551420 @default.
- W3052387422 cites W2754652880 @default.
- W3052387422 cites W2765934651 @default.
- W3052387422 cites W2766784511 @default.
- W3052387422 cites W2774931648 @default.
- W3052387422 cites W2804975666 @default.
- W3052387422 cites W2887020329 @default.
- W3052387422 cites W2887709959 @default.
- W3052387422 cites W2895877122 @default.
- W3052387422 cites W2898937344 @default.
- W3052387422 cites W2916820159 @default.
- W3052387422 cites W2972315601 @default.
- W3052387422 cites W2975012524 @default.
- W3052387422 cites W2993751587 @default.
- W3052387422 cites W2994476041 @default.
- W3052387422 cites W3004516368 @default.
- W3052387422 cites W3007833381 @default.
- W3052387422 cites W3008838108 @default.
- W3052387422 cites W3013082352 @default.
- W3052387422 cites W3023824251 @default.
- W3052387422 cites W3037933067 @default.
- W3052387422 cites W3039400935 @default.
- W3052387422 doi "https://doi.org/10.3390/su12176749" @default.
- W3052387422 hasPublicationYear "2020" @default.
- W3052387422 type Work @default.
- W3052387422 sameAs 3052387422 @default.
- W3052387422 citedByCount "15" @default.
- W3052387422 countsByYear W30523874222021 @default.
- W3052387422 countsByYear W30523874222022 @default.
- W3052387422 countsByYear W30523874222023 @default.
- W3052387422 crossrefType "journal-article" @default.
- W3052387422 hasAuthorship W3052387422A5060310967 @default.
- W3052387422 hasBestOaLocation W30523874221 @default.
- W3052387422 hasConcept C119599485 @default.
- W3052387422 hasConcept C121332964 @default.
- W3052387422 hasConcept C127413603 @default.
- W3052387422 hasConcept C133913538 @default.
- W3052387422 hasConcept C153294291 @default.
- W3052387422 hasConcept C154945302 @default.
- W3052387422 hasConcept C170154142 @default.
- W3052387422 hasConcept C200457457 @default.
- W3052387422 hasConcept C206018219 @default.
- W3052387422 hasConcept C2742236 @default.
- W3052387422 hasConcept C39432304 @default.
- W3052387422 hasConcept C41008148 @default.
- W3052387422 hasConcept C44154836 @default.
- W3052387422 hasConcept C50644808 @default.
- W3052387422 hasConcept C65469 @default.
- W3052387422 hasConcept C78519656 @default.
- W3052387422 hasConcept C87717796 @default.
- W3052387422 hasConceptScore W3052387422C119599485 @default.
- W3052387422 hasConceptScore W3052387422C121332964 @default.
- W3052387422 hasConceptScore W3052387422C127413603 @default.
- W3052387422 hasConceptScore W3052387422C133913538 @default.
- W3052387422 hasConceptScore W3052387422C153294291 @default.
- W3052387422 hasConceptScore W3052387422C154945302 @default.
- W3052387422 hasConceptScore W3052387422C170154142 @default.
- W3052387422 hasConceptScore W3052387422C200457457 @default.
- W3052387422 hasConceptScore W3052387422C206018219 @default.
- W3052387422 hasConceptScore W3052387422C2742236 @default.
- W3052387422 hasConceptScore W3052387422C39432304 @default.
- W3052387422 hasConceptScore W3052387422C41008148 @default.
- W3052387422 hasConceptScore W3052387422C44154836 @default.