Matches in SemOpenAlex for { <https://semopenalex.org/work/W3054441226> ?p ?o ?g. }
- W3054441226 endingPage "5773" @default.
- W3054441226 startingPage "5773" @default.
- W3054441226 abstract "One of the models in the literature for modeling the behavior of the brain is the Bayesian attractor model, which is a kind of machine-learning algorithm. According to this model, the brain assigns stochastic variables to possible decisions (attractors) and chooses one of them when enough evidence is collected from sensory systems to achieve a confidence level high enough to make a decision. In this paper, we introduce a software defined networking (SDN) application based on a brain-inspired Bayesian attractor model for identification of the current traffic pattern for the supervision and automation of Internet of things (IoT) networks that exhibit a limited number of traffic patterns. In a real SDN testbed, we demonstrate that our SDN application can identify the traffic patterns using a limited set of fluctuating network statistics of edge link utilization. Moreover, we show that our application can improve core link utilization and the power efficiency of IoT networks by immediately applying a pre-calculated network configuration optimized by traffic engineering with network slicing for the identified pattern." @default.
- W3054441226 created "2020-08-24" @default.
- W3054441226 creator A5019839911 @default.
- W3054441226 creator A5048806632 @default.
- W3054441226 creator A5090165182 @default.
- W3054441226 date "2020-08-20" @default.
- W3054441226 modified "2023-09-26" @default.
- W3054441226 title "SDN-Based Control of IoT Network by Brain-Inspired Bayesian Attractor Model and Network Slicing" @default.
- W3054441226 cites W1513624053 @default.
- W3054441226 cites W1749494163 @default.
- W3054441226 cites W1970202913 @default.
- W3054441226 cites W1984776849 @default.
- W3054441226 cites W2004287727 @default.
- W3054441226 cites W2035395818 @default.
- W3054441226 cites W2044807855 @default.
- W3054441226 cites W2047627502 @default.
- W3054441226 cites W2070691756 @default.
- W3054441226 cites W2077342791 @default.
- W3054441226 cites W2092832849 @default.
- W3054441226 cites W2126281557 @default.
- W3054441226 cites W2133294820 @default.
- W3054441226 cites W2141349357 @default.
- W3054441226 cites W2147118406 @default.
- W3054441226 cites W2342553574 @default.
- W3054441226 cites W2460167162 @default.
- W3054441226 cites W2523953360 @default.
- W3054441226 cites W2531059648 @default.
- W3054441226 cites W2586992378 @default.
- W3054441226 cites W2605853895 @default.
- W3054441226 cites W2613703610 @default.
- W3054441226 cites W2735680195 @default.
- W3054441226 cites W2775365025 @default.
- W3054441226 cites W2793500577 @default.
- W3054441226 cites W2794850342 @default.
- W3054441226 cites W2859566721 @default.
- W3054441226 cites W2889231698 @default.
- W3054441226 cites W2914593650 @default.
- W3054441226 cites W2914819972 @default.
- W3054441226 cites W2915905517 @default.
- W3054441226 cites W2923245661 @default.
- W3054441226 cites W2957106850 @default.
- W3054441226 cites W2984000169 @default.
- W3054441226 cites W2999389558 @default.
- W3054441226 cites W3008791560 @default.
- W3054441226 cites W3013701091 @default.
- W3054441226 cites W3162562816 @default.
- W3054441226 cites W4239560345 @default.
- W3054441226 cites W4246071789 @default.
- W3054441226 doi "https://doi.org/10.3390/app10175773" @default.
- W3054441226 hasPublicationYear "2020" @default.
- W3054441226 type Work @default.
- W3054441226 sameAs 3054441226 @default.
- W3054441226 citedByCount "2" @default.
- W3054441226 countsByYear W30544412262020 @default.
- W3054441226 countsByYear W30544412262022 @default.
- W3054441226 crossrefType "journal-article" @default.
- W3054441226 hasAuthorship W3054441226A5019839911 @default.
- W3054441226 hasAuthorship W3054441226A5048806632 @default.
- W3054441226 hasAuthorship W3054441226A5090165182 @default.
- W3054441226 hasBestOaLocation W30544412261 @default.
- W3054441226 hasConcept C119857082 @default.
- W3054441226 hasConcept C120314980 @default.
- W3054441226 hasConcept C124101348 @default.
- W3054441226 hasConcept C134306372 @default.
- W3054441226 hasConcept C136764020 @default.
- W3054441226 hasConcept C154945302 @default.
- W3054441226 hasConcept C164380108 @default.
- W3054441226 hasConcept C177264268 @default.
- W3054441226 hasConcept C199360897 @default.
- W3054441226 hasConcept C2776190703 @default.
- W3054441226 hasConcept C31258907 @default.
- W3054441226 hasConcept C31395832 @default.
- W3054441226 hasConcept C33724603 @default.
- W3054441226 hasConcept C33923547 @default.
- W3054441226 hasConcept C41008148 @default.
- W3054441226 hasConcept C77270119 @default.
- W3054441226 hasConceptScore W3054441226C119857082 @default.
- W3054441226 hasConceptScore W3054441226C120314980 @default.
- W3054441226 hasConceptScore W3054441226C124101348 @default.
- W3054441226 hasConceptScore W3054441226C134306372 @default.
- W3054441226 hasConceptScore W3054441226C136764020 @default.
- W3054441226 hasConceptScore W3054441226C154945302 @default.
- W3054441226 hasConceptScore W3054441226C164380108 @default.
- W3054441226 hasConceptScore W3054441226C177264268 @default.
- W3054441226 hasConceptScore W3054441226C199360897 @default.
- W3054441226 hasConceptScore W3054441226C2776190703 @default.
- W3054441226 hasConceptScore W3054441226C31258907 @default.
- W3054441226 hasConceptScore W3054441226C31395832 @default.
- W3054441226 hasConceptScore W3054441226C33724603 @default.
- W3054441226 hasConceptScore W3054441226C33923547 @default.
- W3054441226 hasConceptScore W3054441226C41008148 @default.
- W3054441226 hasConceptScore W3054441226C77270119 @default.
- W3054441226 hasIssue "17" @default.
- W3054441226 hasLocation W30544412261 @default.
- W3054441226 hasOpenAccess W3054441226 @default.
- W3054441226 hasPrimaryLocation W30544412261 @default.
- W3054441226 hasRelatedWork W1669499690 @default.
- W3054441226 hasRelatedWork W2047814498 @default.