Matches in SemOpenAlex for { <https://semopenalex.org/work/W305511764> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W305511764 abstract "Early cancer detection drastically improves the chances of cure and therefore methodsare required, which allow early detection and screening in a fast, reliable andinexpensive manner. A prospective method, featuring all these characteristics, isvibrational spectroscopy. In order to take the next step towards the development ofthis technology into a clinical diagnostic tool, classification and imaging methods foran automated diagnosis based on spectral data are required.For this study, Raman spectra, derived from axillary lymph node tissue from breastcancer patients, were used to develop a diagnostic model. For this purpose differentclassification methods were investigated. A support vector machine (SVM) proved tobe the best choice of classification method since it classified 100% of the unseen testset correctly. The resulting diagnostic models were thoroughly tested for theirrobustness to the spectral corruptions that would be expected to occur during routineclinical analysis. It showed that sufficient robustness is provided for a futurediagnostic routine application.SVMs demonstrated to be a powerful classifier for Raman data and due to that theywere also investigated for infrared spectroscopic data. Since it was found that a singleSVM was not capable of reliably predicting breast cancer pathology based on tissuecalcifications measured by infrared micro-spectroscopy a SVM ensemble system wasimplemented. The resulting multi-class SVM ensemble predicted the pathology of theunseen test set with an accuracy of 88.9%, in comparison a single SVM assessed withthe same unseen test set achieved 66.7% accuracy. In addition, the ensemble systemwas extended for analysing complete infrared maps obtained from breast tissuespecimens. The resulting imaging method successfully detected and stagedcalcification in infrared maps. Furthermore, this imaging approach revealed newinsights into the calcification process in malignant development, which was notpreviously well understood." @default.
- W305511764 created "2016-06-24" @default.
- W305511764 creator A5065106949 @default.
- W305511764 date "2011-01-01" @default.
- W305511764 modified "2023-09-28" @default.
- W305511764 title "Optimisation of machine learning methods for cancer detection using vibrational spectroscopy" @default.
- W305511764 hasPublicationYear "2011" @default.
- W305511764 type Work @default.
- W305511764 sameAs 305511764 @default.
- W305511764 citedByCount "0" @default.
- W305511764 crossrefType "dissertation" @default.
- W305511764 hasAuthorship W305511764A5065106949 @default.
- W305511764 hasConcept C104317684 @default.
- W305511764 hasConcept C119857082 @default.
- W305511764 hasConcept C12267149 @default.
- W305511764 hasConcept C153180895 @default.
- W305511764 hasConcept C154945302 @default.
- W305511764 hasConcept C169903167 @default.
- W305511764 hasConcept C185592680 @default.
- W305511764 hasConcept C41008148 @default.
- W305511764 hasConcept C45942800 @default.
- W305511764 hasConcept C55493867 @default.
- W305511764 hasConcept C63479239 @default.
- W305511764 hasConcept C95623464 @default.
- W305511764 hasConceptScore W305511764C104317684 @default.
- W305511764 hasConceptScore W305511764C119857082 @default.
- W305511764 hasConceptScore W305511764C12267149 @default.
- W305511764 hasConceptScore W305511764C153180895 @default.
- W305511764 hasConceptScore W305511764C154945302 @default.
- W305511764 hasConceptScore W305511764C169903167 @default.
- W305511764 hasConceptScore W305511764C185592680 @default.
- W305511764 hasConceptScore W305511764C41008148 @default.
- W305511764 hasConceptScore W305511764C45942800 @default.
- W305511764 hasConceptScore W305511764C55493867 @default.
- W305511764 hasConceptScore W305511764C63479239 @default.
- W305511764 hasConceptScore W305511764C95623464 @default.
- W305511764 hasLocation W3055117641 @default.
- W305511764 hasOpenAccess W305511764 @default.
- W305511764 hasPrimaryLocation W3055117641 @default.
- W305511764 hasRelatedWork W1668010126 @default.
- W305511764 hasRelatedWork W1964126817 @default.
- W305511764 hasRelatedWork W2007659676 @default.
- W305511764 hasRelatedWork W2015960426 @default.
- W305511764 hasRelatedWork W2018060680 @default.
- W305511764 hasRelatedWork W2032529507 @default.
- W305511764 hasRelatedWork W2046285523 @default.
- W305511764 hasRelatedWork W2048660210 @default.
- W305511764 hasRelatedWork W2116278801 @default.
- W305511764 hasRelatedWork W2464467392 @default.
- W305511764 hasRelatedWork W2529446434 @default.
- W305511764 hasRelatedWork W2607226804 @default.
- W305511764 hasRelatedWork W2765955914 @default.
- W305511764 hasRelatedWork W2810545890 @default.
- W305511764 hasRelatedWork W2903863295 @default.
- W305511764 hasRelatedWork W2980224611 @default.
- W305511764 hasRelatedWork W3017001025 @default.
- W305511764 hasRelatedWork W3092203241 @default.
- W305511764 hasRelatedWork W3166134106 @default.
- W305511764 hasRelatedWork W3210819212 @default.
- W305511764 isParatext "false" @default.
- W305511764 isRetracted "false" @default.
- W305511764 magId "305511764" @default.
- W305511764 workType "dissertation" @default.