Matches in SemOpenAlex for { <https://semopenalex.org/work/W3055801575> ?p ?o ?g. }
- W3055801575 endingPage "50" @default.
- W3055801575 startingPage "31" @default.
- W3055801575 abstract "Objective of this study is to introduce a secure IoHT system, which acts as a clinical decision support system with the diagnosis of cardiovascular diseases. In this sense, it was emphasized that the accuracy rate of diagnosis (classification) can be improved via deep learning algorithms, by needing no hybrid-complex models, and a secure data processing can be achieved with a multi-authentication and Tangle based approach. In detail, heart sounds were classified with Autoencoder Neural Networks (AEN) and the IoHT system was built for supporting doctors in real-time. For developing the diagnosis infrastructure by the AEN, PASCAL B-Training and Physiobank-PhysioNet A-Training heart sound datasets were used accordingly. For the PASCAL dataset, the AEN provided a diagnosis-classification performance with the accuracy of 100%, sensitivity of 100%, and the specificity of 100% whereas the rates were respectively 99.8%, 99.65%, and 99.13% for the PhysioNet dataset. It was seen that the findings by the developed AEN based solution were better than the alternative solutions from the literature. Additionally, usability of the whole IoHT system was found positive by the doctors, and according to the 479 real-case applications, the system was able to achieve accuracy rates of 96.03% for normal heart sounds, 91.91% for extrasystole, and 90.11% for murmur. In terms of security approach, the system was also robust against several attacking methods including synthetic data impute as well as trying to penetrating to the system via central system or mobile devices." @default.
- W3055801575 created "2020-08-24" @default.
- W3055801575 creator A5034853815 @default.
- W3055801575 creator A5041348809 @default.
- W3055801575 creator A5050042995 @default.
- W3055801575 creator A5072241102 @default.
- W3055801575 creator A5089689368 @default.
- W3055801575 date "2020-10-01" @default.
- W3055801575 modified "2023-10-11" @default.
- W3055801575 title "Diagnosis of heart diseases by a secure Internet of Health Things system based on Autoencoder Deep Neural Network" @default.
- W3055801575 cites W1643655047 @default.
- W3055801575 cites W1974874858 @default.
- W3055801575 cites W2017257315 @default.
- W3055801575 cites W2022163189 @default.
- W3055801575 cites W2032872862 @default.
- W3055801575 cites W2070104915 @default.
- W3055801575 cites W2080462706 @default.
- W3055801575 cites W2093376526 @default.
- W3055801575 cites W2123189179 @default.
- W3055801575 cites W2124221354 @default.
- W3055801575 cites W2131444712 @default.
- W3055801575 cites W2143755314 @default.
- W3055801575 cites W2162800060 @default.
- W3055801575 cites W2223903364 @default.
- W3055801575 cites W2233147346 @default.
- W3055801575 cites W2288572729 @default.
- W3055801575 cites W2289888027 @default.
- W3055801575 cites W2316484125 @default.
- W3055801575 cites W2540718148 @default.
- W3055801575 cites W2541133059 @default.
- W3055801575 cites W2557139718 @default.
- W3055801575 cites W2560128157 @default.
- W3055801575 cites W2565516711 @default.
- W3055801575 cites W2578354350 @default.
- W3055801575 cites W2593815446 @default.
- W3055801575 cites W2605891043 @default.
- W3055801575 cites W2606525468 @default.
- W3055801575 cites W2612816431 @default.
- W3055801575 cites W2613181244 @default.
- W3055801575 cites W2614911799 @default.
- W3055801575 cites W2740387765 @default.
- W3055801575 cites W2741482959 @default.
- W3055801575 cites W2744367260 @default.
- W3055801575 cites W2751049114 @default.
- W3055801575 cites W2765389805 @default.
- W3055801575 cites W2782169620 @default.
- W3055801575 cites W2883178266 @default.
- W3055801575 cites W2884549379 @default.
- W3055801575 cites W2898424678 @default.
- W3055801575 cites W2905097366 @default.
- W3055801575 cites W2924178503 @default.
- W3055801575 cites W2948032685 @default.
- W3055801575 cites W2953236409 @default.
- W3055801575 cites W2956500030 @default.
- W3055801575 cites W2959951130 @default.
- W3055801575 cites W2967189346 @default.
- W3055801575 cites W2970061430 @default.
- W3055801575 cites W2971515944 @default.
- W3055801575 cites W2985020236 @default.
- W3055801575 cites W2987867378 @default.
- W3055801575 cites W2991201356 @default.
- W3055801575 cites W2993118585 @default.
- W3055801575 cites W2996028987 @default.
- W3055801575 cites W2999407103 @default.
- W3055801575 cites W2999473766 @default.
- W3055801575 cites W3003453968 @default.
- W3055801575 cites W3004702404 @default.
- W3055801575 cites W3005514561 @default.
- W3055801575 cites W3005771459 @default.
- W3055801575 cites W3006007222 @default.
- W3055801575 cites W3007212997 @default.
- W3055801575 cites W3015222325 @default.
- W3055801575 cites W3021318637 @default.
- W3055801575 cites W3029410543 @default.
- W3055801575 cites W3034476452 @default.
- W3055801575 cites W3098163168 @default.
- W3055801575 cites W3145320818 @default.
- W3055801575 doi "https://doi.org/10.1016/j.comcom.2020.08.011" @default.
- W3055801575 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7434639" @default.
- W3055801575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32843778" @default.
- W3055801575 hasPublicationYear "2020" @default.
- W3055801575 type Work @default.
- W3055801575 sameAs 3055801575 @default.
- W3055801575 citedByCount "42" @default.
- W3055801575 countsByYear W30558015752020 @default.
- W3055801575 countsByYear W30558015752021 @default.
- W3055801575 countsByYear W30558015752022 @default.
- W3055801575 countsByYear W30558015752023 @default.
- W3055801575 crossrefType "journal-article" @default.
- W3055801575 hasAuthorship W3055801575A5034853815 @default.
- W3055801575 hasAuthorship W3055801575A5041348809 @default.
- W3055801575 hasAuthorship W3055801575A5050042995 @default.
- W3055801575 hasAuthorship W3055801575A5072241102 @default.
- W3055801575 hasAuthorship W3055801575A5089689368 @default.
- W3055801575 hasBestOaLocation W30558015751 @default.
- W3055801575 hasConcept C101738243 @default.
- W3055801575 hasConcept C107457646 @default.
- W3055801575 hasConcept C108583219 @default.