Matches in SemOpenAlex for { <https://semopenalex.org/work/W3059565599> ?p ?o ?g. }
- W3059565599 abstract "Multiobjective genetic algorithms (MOGAs) have proven to be powerful in solving multiobjective problems in the accelerator field. Nevertheless, for explorative problems that have many variables and local optima, the performance of MOGAs is not always satisfactory, especially when a small population size is used due to practical limitations, e.g., limited computing resources. To deal with this challenge, in this paper an enhanced MOGA, neural network-based MOGA (NBMOGA), is proposed. In this method, the data produced with the standard MOGA are used to train a neural network. The neural network is fast to produce a large pool of objective function estimates, with sufficiently high accuracy. A subset of the most competitive estimates is selected to form a population (matching MOGA population size), which is then evaluated with the MOGA evaluator. By taking three classic multiobjective problems as examples, we demonstrate that the proposed method promises a faster convergence and a higher degree of diversity than that available with the standard MOGA and other three optimization methods that have been applied in the accelerator field, i.e., the multiobjective particle swarm optimization (MOPSO), the combination of MOPSO and MOGA, and the clustering enhanced MOGA. And then this method is applied to a time-consuming optimization problem, the dynamic aperture and Touschek lifetime optimization of the high energy photon source. It turns out that, within the same optimization time, a better set of solutions in the objective space can be obtained with the NBMOGA than using other methods. The Touschek lifetime can be improved by about 10% compared with using the standard MOGA, with approximately the same dynamic aperture area. Besides, a higher degree of diversity among solutions is observed with the NBMOGA than using other tested methods." @default.
- W3059565599 created "2020-08-24" @default.
- W3059565599 creator A5018218547 @default.
- W3059565599 creator A5059413372 @default.
- W3059565599 creator A5088192976 @default.
- W3059565599 date "2020-08-17" @default.
- W3059565599 modified "2023-10-10" @default.
- W3059565599 title "Neural network-based multiobjective optimization algorithm for nonlinear beam dynamics" @default.
- W3059565599 cites W1498436455 @default.
- W3059565599 cites W1983103920 @default.
- W3059565599 cites W1990929663 @default.
- W3059565599 cites W1997500561 @default.
- W3059565599 cites W2007700211 @default.
- W3059565599 cites W2095602000 @default.
- W3059565599 cites W2101927907 @default.
- W3059565599 cites W2116424792 @default.
- W3059565599 cites W2116661285 @default.
- W3059565599 cites W2125899728 @default.
- W3059565599 cites W2126105956 @default.
- W3059565599 cites W2198168719 @default.
- W3059565599 cites W2297571811 @default.
- W3059565599 cites W2402261561 @default.
- W3059565599 cites W2463022506 @default.
- W3059565599 cites W2592437439 @default.
- W3059565599 cites W2806105109 @default.
- W3059565599 cites W2894232796 @default.
- W3059565599 cites W2971862012 @default.
- W3059565599 doi "https://doi.org/10.1103/physrevaccelbeams.23.081601" @default.
- W3059565599 hasPublicationYear "2020" @default.
- W3059565599 type Work @default.
- W3059565599 sameAs 3059565599 @default.
- W3059565599 citedByCount "17" @default.
- W3059565599 countsByYear W30595655992020 @default.
- W3059565599 countsByYear W30595655992021 @default.
- W3059565599 countsByYear W30595655992022 @default.
- W3059565599 countsByYear W30595655992023 @default.
- W3059565599 crossrefType "journal-article" @default.
- W3059565599 hasAuthorship W3059565599A5018218547 @default.
- W3059565599 hasAuthorship W3059565599A5059413372 @default.
- W3059565599 hasAuthorship W3059565599A5088192976 @default.
- W3059565599 hasBestOaLocation W30595655991 @default.
- W3059565599 hasConcept C101219045 @default.
- W3059565599 hasConcept C11413529 @default.
- W3059565599 hasConcept C122357587 @default.
- W3059565599 hasConcept C126255220 @default.
- W3059565599 hasConcept C137836250 @default.
- W3059565599 hasConcept C141934464 @default.
- W3059565599 hasConcept C144024400 @default.
- W3059565599 hasConcept C149923435 @default.
- W3059565599 hasConcept C154945302 @default.
- W3059565599 hasConcept C162324750 @default.
- W3059565599 hasConcept C202444582 @default.
- W3059565599 hasConcept C2777303404 @default.
- W3059565599 hasConcept C2908647359 @default.
- W3059565599 hasConcept C33923547 @default.
- W3059565599 hasConcept C41008148 @default.
- W3059565599 hasConcept C50522688 @default.
- W3059565599 hasConcept C50644808 @default.
- W3059565599 hasConcept C68781425 @default.
- W3059565599 hasConcept C73555534 @default.
- W3059565599 hasConcept C85617194 @default.
- W3059565599 hasConcept C8880873 @default.
- W3059565599 hasConcept C9652623 @default.
- W3059565599 hasConceptScore W3059565599C101219045 @default.
- W3059565599 hasConceptScore W3059565599C11413529 @default.
- W3059565599 hasConceptScore W3059565599C122357587 @default.
- W3059565599 hasConceptScore W3059565599C126255220 @default.
- W3059565599 hasConceptScore W3059565599C137836250 @default.
- W3059565599 hasConceptScore W3059565599C141934464 @default.
- W3059565599 hasConceptScore W3059565599C144024400 @default.
- W3059565599 hasConceptScore W3059565599C149923435 @default.
- W3059565599 hasConceptScore W3059565599C154945302 @default.
- W3059565599 hasConceptScore W3059565599C162324750 @default.
- W3059565599 hasConceptScore W3059565599C202444582 @default.
- W3059565599 hasConceptScore W3059565599C2777303404 @default.
- W3059565599 hasConceptScore W3059565599C2908647359 @default.
- W3059565599 hasConceptScore W3059565599C33923547 @default.
- W3059565599 hasConceptScore W3059565599C41008148 @default.
- W3059565599 hasConceptScore W3059565599C50522688 @default.
- W3059565599 hasConceptScore W3059565599C50644808 @default.
- W3059565599 hasConceptScore W3059565599C68781425 @default.
- W3059565599 hasConceptScore W3059565599C73555534 @default.
- W3059565599 hasConceptScore W3059565599C85617194 @default.
- W3059565599 hasConceptScore W3059565599C8880873 @default.
- W3059565599 hasConceptScore W3059565599C9652623 @default.
- W3059565599 hasFunder F4320321001 @default.
- W3059565599 hasFunder F4320321133 @default.
- W3059565599 hasFunder F4320322847 @default.
- W3059565599 hasIssue "8" @default.
- W3059565599 hasLocation W30595655991 @default.
- W3059565599 hasLocation W30595655992 @default.
- W3059565599 hasOpenAccess W3059565599 @default.
- W3059565599 hasPrimaryLocation W30595655991 @default.
- W3059565599 hasRelatedWork W1747965218 @default.
- W3059565599 hasRelatedWork W1997830976 @default.
- W3059565599 hasRelatedWork W2016831998 @default.
- W3059565599 hasRelatedWork W2122222693 @default.
- W3059565599 hasRelatedWork W2165171393 @default.
- W3059565599 hasRelatedWork W2370379129 @default.
- W3059565599 hasRelatedWork W2378509784 @default.