Matches in SemOpenAlex for { <https://semopenalex.org/work/W3060714964> ?p ?o ?g. }
- W3060714964 endingPage "6673" @default.
- W3060714964 startingPage "6673" @default.
- W3060714964 abstract "Airbnb has emerged as a platform where unique accommodation options can be found. Due to the uniqueness of each accommodation unit and host combination, each listing offers a one-of-a-kind experience. As consumers increasingly rely on text reviews of other customers, managers are also increasingly gaining insight from customer reviews. Thus, this present study aimed to extract those insights from reviews using latent Dirichlet allocation, an unsupervised type of topic modeling that extracts latent discussion topics from text data. Findings of Hong Kong’s 185,695 and Singapore’s 93,571 Airbnb reviews, two long-term rival destinations, were compared. Hong Kong produced 12 total topics that can be categorized into four distinct groups whereas Singapore’s optimal number of topics was only five. Topics produced from both destinations covered the same range of attributes, but Hong Kong’s 12 topics provide a greater degree of precision to formulate managerial recommendations. While many topics are similar to established hotel attributes, topics related to the host and listing management are unique to the Airbnb experience. The findings also revealed keywords used when evaluating the experience that provide more insight beyond typical numeric ratings." @default.
- W3060714964 created "2020-08-24" @default.
- W3060714964 creator A5017485542 @default.
- W3060714964 creator A5032751616 @default.
- W3060714964 creator A5043486744 @default.
- W3060714964 date "2020-08-18" @default.
- W3060714964 modified "2023-10-11" @default.
- W3060714964 title "A Comparative Automated Text Analysis of Airbnb Reviews in Hong Kong and Singapore Using Latent Dirichlet Allocation" @default.
- W3060714964 cites W1916023682 @default.
- W3060714964 cites W1983531063 @default.
- W3060714964 cites W1988259540 @default.
- W3060714964 cites W1996187370 @default.
- W3060714964 cites W2001082470 @default.
- W3060714964 cites W2006604430 @default.
- W3060714964 cites W2006897536 @default.
- W3060714964 cites W2025273223 @default.
- W3060714964 cites W2028327917 @default.
- W3060714964 cites W2073893632 @default.
- W3060714964 cites W2093605115 @default.
- W3060714964 cites W2095655043 @default.
- W3060714964 cites W2101713616 @default.
- W3060714964 cites W2116454389 @default.
- W3060714964 cites W2132314509 @default.
- W3060714964 cites W2140910804 @default.
- W3060714964 cites W2288881651 @default.
- W3060714964 cites W2319191615 @default.
- W3060714964 cites W2475323853 @default.
- W3060714964 cites W2498408438 @default.
- W3060714964 cites W2520828129 @default.
- W3060714964 cites W2561182609 @default.
- W3060714964 cites W2567508531 @default.
- W3060714964 cites W2578781986 @default.
- W3060714964 cites W2582174585 @default.
- W3060714964 cites W2587840773 @default.
- W3060714964 cites W2602966559 @default.
- W3060714964 cites W2736568984 @default.
- W3060714964 cites W2737782124 @default.
- W3060714964 cites W2765183831 @default.
- W3060714964 cites W2769502396 @default.
- W3060714964 cites W2774008574 @default.
- W3060714964 cites W2779594574 @default.
- W3060714964 cites W2782217737 @default.
- W3060714964 cites W2795240022 @default.
- W3060714964 cites W2811422155 @default.
- W3060714964 cites W2884640562 @default.
- W3060714964 cites W2886868064 @default.
- W3060714964 cites W2900628301 @default.
- W3060714964 cites W2904763420 @default.
- W3060714964 cites W2912747581 @default.
- W3060714964 cites W2913130274 @default.
- W3060714964 cites W2931416085 @default.
- W3060714964 cites W2934600325 @default.
- W3060714964 cites W2940640018 @default.
- W3060714964 cites W2950403935 @default.
- W3060714964 cites W3009072477 @default.
- W3060714964 cites W3011140364 @default.
- W3060714964 cites W3020113936 @default.
- W3060714964 cites W3021278156 @default.
- W3060714964 cites W3026498256 @default.
- W3060714964 cites W3036666861 @default.
- W3060714964 doi "https://doi.org/10.3390/su12166673" @default.
- W3060714964 hasPublicationYear "2020" @default.
- W3060714964 type Work @default.
- W3060714964 sameAs 3060714964 @default.
- W3060714964 citedByCount "22" @default.
- W3060714964 countsByYear W30607149642020 @default.
- W3060714964 countsByYear W30607149642021 @default.
- W3060714964 countsByYear W30607149642022 @default.
- W3060714964 countsByYear W30607149642023 @default.
- W3060714964 crossrefType "journal-article" @default.
- W3060714964 hasAuthorship W3060714964A5017485542 @default.
- W3060714964 hasAuthorship W3060714964A5032751616 @default.
- W3060714964 hasAuthorship W3060714964A5043486744 @default.
- W3060714964 hasBestOaLocation W30607149641 @default.
- W3060714964 hasConcept C10138342 @default.
- W3060714964 hasConcept C107482638 @default.
- W3060714964 hasConcept C112698675 @default.
- W3060714964 hasConcept C136764020 @default.
- W3060714964 hasConcept C144133560 @default.
- W3060714964 hasConcept C15744967 @default.
- W3060714964 hasConcept C157660682 @default.
- W3060714964 hasConcept C162853370 @default.
- W3060714964 hasConcept C166957645 @default.
- W3060714964 hasConcept C169760540 @default.
- W3060714964 hasConcept C171686336 @default.
- W3060714964 hasConcept C18918823 @default.
- W3060714964 hasConcept C205649164 @default.
- W3060714964 hasConcept C23123220 @default.
- W3060714964 hasConcept C2522767166 @default.
- W3060714964 hasConcept C2776687071 @default.
- W3060714964 hasConcept C2779820595 @default.
- W3060714964 hasConcept C41008148 @default.
- W3060714964 hasConcept C500882744 @default.
- W3060714964 hasConceptScore W3060714964C10138342 @default.
- W3060714964 hasConceptScore W3060714964C107482638 @default.
- W3060714964 hasConceptScore W3060714964C112698675 @default.
- W3060714964 hasConceptScore W3060714964C136764020 @default.
- W3060714964 hasConceptScore W3060714964C144133560 @default.