Matches in SemOpenAlex for { <https://semopenalex.org/work/W3060952692> ?p ?o ?g. }
- W3060952692 abstract "In the Disjoint Paths problem, the input consists of an $n$-vertex graph $G$ and a collection of $k$ vertex pairs, ${(s_i,t_i)}_{i=1}^k$, and the objective is to determine whether there exists a collection ${P_i}_{i=1}^k$ of $k$ pairwise vertex-disjoint paths in $G$ where the end-vertices of $P_i$ are $s_i$ and $t_i$. This problem was shown to admit an $f(k)n^3$-time algorithm by Robertson and Seymour (Graph Minors XIII, The Disjoint Paths Problem, JCTB). In modern terminology, this means that Disjoint Paths is fixed parameter tractable (FPT) with respect to $k$. Remarkably, the above algorithm for Disjoint Paths is a cornerstone of the entire Graph Minors Theory, and conceptually vital to the $g(k)n^3$-time algorithm for Minor Testing (given two undirected graphs, $G$ and $H$ on $n$ and $k$ vertices, respectively, determine whether $G$ contains $H$ as a minor). In this semi-survey, we will first give an exposition of the Graph Minors Theory with emphasis on efficiency from the viewpoint of Parameterized Complexity. Secondly, we will review the state of the art with respect to the Disjoint Paths and Planar Disjoint Paths problems. Lastly, we will discuss the main ideas behind a new algorithm that combines treewidth reduction and an algebraic approach to solve Planar Disjoint Paths in time $2^{k^{O(1)}}n^{O(1)}$ (for undirected graphs)." @default.
- W3060952692 created "2020-08-24" @default.
- W3060952692 creator A5015806060 @default.
- W3060952692 creator A5038531405 @default.
- W3060952692 creator A5082025487 @default.
- W3060952692 date "2020-08-19" @default.
- W3060952692 modified "2023-09-27" @default.
- W3060952692 title "Efficient Graph Minors Theory and Parameterized Algorithms for (Planar) Disjoint Paths" @default.
- W3060952692 cites W100926944 @default.
- W3060952692 cites W1492250485 @default.
- W3060952692 cites W1505555274 @default.
- W3060952692 cites W1509664253 @default.
- W3060952692 cites W1550254812 @default.
- W3060952692 cites W1561738351 @default.
- W3060952692 cites W167453680 @default.
- W3060952692 cites W1677170854 @default.
- W3060952692 cites W1918504188 @default.
- W3060952692 cites W1964064059 @default.
- W3060952692 cites W1965012931 @default.
- W3060952692 cites W1984897155 @default.
- W3060952692 cites W1986916307 @default.
- W3060952692 cites W1989055377 @default.
- W3060952692 cites W1994533463 @default.
- W3060952692 cites W1998811202 @default.
- W3060952692 cites W2005079828 @default.
- W3060952692 cites W2007069176 @default.
- W3060952692 cites W2011039300 @default.
- W3060952692 cites W2042509875 @default.
- W3060952692 cites W2046069847 @default.
- W3060952692 cites W2050579693 @default.
- W3060952692 cites W2060632898 @default.
- W3060952692 cites W2071321409 @default.
- W3060952692 cites W2079155561 @default.
- W3060952692 cites W2102722785 @default.
- W3060952692 cites W2115589427 @default.
- W3060952692 cites W2115607023 @default.
- W3060952692 cites W2145804139 @default.
- W3060952692 cites W2148043549 @default.
- W3060952692 cites W2152982698 @default.
- W3060952692 cites W2158584754 @default.
- W3060952692 cites W2165930352 @default.
- W3060952692 cites W2183582012 @default.
- W3060952692 cites W2253740506 @default.
- W3060952692 cites W2295563127 @default.
- W3060952692 cites W2297903070 @default.
- W3060952692 cites W2486511178 @default.
- W3060952692 cites W2550041253 @default.
- W3060952692 cites W2563156040 @default.
- W3060952692 cites W2803460775 @default.
- W3060952692 cites W2914414140 @default.
- W3060952692 cites W2963253390 @default.
- W3060952692 cites W2963559342 @default.
- W3060952692 cites W2963838695 @default.
- W3060952692 cites W2963896308 @default.
- W3060952692 cites W2963908100 @default.
- W3060952692 cites W2988480584 @default.
- W3060952692 cites W30204139 @default.
- W3060952692 cites W3035318934 @default.
- W3060952692 cites W3035520095 @default.
- W3060952692 cites W652060095 @default.
- W3060952692 cites W836309381 @default.
- W3060952692 hasPublicationYear "2020" @default.
- W3060952692 type Work @default.
- W3060952692 sameAs 3060952692 @default.
- W3060952692 citedByCount "0" @default.
- W3060952692 crossrefType "posted-content" @default.
- W3060952692 hasAuthorship W3060952692A5015806060 @default.
- W3060952692 hasAuthorship W3060952692A5038531405 @default.
- W3060952692 hasAuthorship W3060952692A5082025487 @default.
- W3060952692 hasConcept C101837359 @default.
- W3060952692 hasConcept C11413529 @default.
- W3060952692 hasConcept C114614502 @default.
- W3060952692 hasConcept C118615104 @default.
- W3060952692 hasConcept C132525143 @default.
- W3060952692 hasConcept C132569581 @default.
- W3060952692 hasConcept C165464430 @default.
- W3060952692 hasConcept C203776342 @default.
- W3060952692 hasConcept C33923547 @default.
- W3060952692 hasConcept C43517604 @default.
- W3060952692 hasConcept C45340560 @default.
- W3060952692 hasConcept C80899671 @default.
- W3060952692 hasConceptScore W3060952692C101837359 @default.
- W3060952692 hasConceptScore W3060952692C11413529 @default.
- W3060952692 hasConceptScore W3060952692C114614502 @default.
- W3060952692 hasConceptScore W3060952692C118615104 @default.
- W3060952692 hasConceptScore W3060952692C132525143 @default.
- W3060952692 hasConceptScore W3060952692C132569581 @default.
- W3060952692 hasConceptScore W3060952692C165464430 @default.
- W3060952692 hasConceptScore W3060952692C203776342 @default.
- W3060952692 hasConceptScore W3060952692C33923547 @default.
- W3060952692 hasConceptScore W3060952692C43517604 @default.
- W3060952692 hasConceptScore W3060952692C45340560 @default.
- W3060952692 hasConceptScore W3060952692C80899671 @default.
- W3060952692 hasLocation W30609526921 @default.
- W3060952692 hasOpenAccess W3060952692 @default.
- W3060952692 hasPrimaryLocation W30609526921 @default.
- W3060952692 hasRelatedWork W1497632486 @default.
- W3060952692 hasRelatedWork W1553728325 @default.
- W3060952692 hasRelatedWork W1585105437 @default.
- W3060952692 hasRelatedWork W2000760879 @default.