Matches in SemOpenAlex for { <https://semopenalex.org/work/W306103628> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W306103628 abstract "Most of the studies of noise-induced phenomena assume that the noise source is Gaussian because of the possibility of obtaining some analytical results when working with Gaussian noises. The use of non-Gaussian noises is rare, mainly because of the difficulties in handling them. However, there is experimental evidence indicating that in many phenomena, the noise sources could be non-Gaussian, for example Poisson data and sparsely corrupted data. This thesis provides two classes of algorithms for dealing with some special types of non-Gaussian noise.Obtaining high quality images is very important in many areas of applied sciences, and the first part of this thesis is on expectation maximization (EM)-Type algorithms for image reconstruction with Poisson noise and weighted Gaussian noise. In these two chapters, we proposed general robust expectation maximization (EM)-Type algorithms for image reconstruction when the measured data is corrupted by Poisson noise and weighted Gaussian noise, without and with background emission. This method is separated into two steps: EM step and regularization step. In order to overcome the contrast reduction introduced by some regularizations, we suggested EM-Type algorithms with Bregman iteration by applying a sequence of modified EM-Type algorithms. One algorithm with total variation being the regularization is used for image reconstruction in computed tomography application.The second part of this thesis is on adaptive outlier pursuit method for sparsely corrupted data. In many real world applications, there are all kinds of errors in the measurements during data acquisition and transmission. Some errors will damage the data seriously and make the obtained data containing no information about the true signal, for example, sign flips in measurements for 1-bit compressive sensing and impulse noise in images. Adaptive outlier pursuit is used to detect the outlier and reconstruct the image or signal by iteratively reconstructing the image or signal and adaptively pursuing the outlier. Adaptive outlier pursuit method is used for robust 1-bit compressive sensing and impulse noise removal in chapters 4 and 5 respectively." @default.
- W306103628 created "2016-06-24" @default.
- W306103628 creator A5056992754 @default.
- W306103628 date "2012-01-01" @default.
- W306103628 modified "2023-09-27" @default.
- W306103628 title "Image and Signal Processing with Non-Gaussian Noise: EM-Type Algorithms and Adaptive Outlier Pursuit" @default.
- W306103628 hasPublicationYear "2012" @default.
- W306103628 type Work @default.
- W306103628 sameAs 306103628 @default.
- W306103628 citedByCount "0" @default.
- W306103628 crossrefType "journal-article" @default.
- W306103628 hasAuthorship W306103628A5056992754 @default.
- W306103628 hasConcept C105795698 @default.
- W306103628 hasConcept C11413529 @default.
- W306103628 hasConcept C115961682 @default.
- W306103628 hasConcept C121332964 @default.
- W306103628 hasConcept C153180895 @default.
- W306103628 hasConcept C154945302 @default.
- W306103628 hasConcept C163294075 @default.
- W306103628 hasConcept C163716315 @default.
- W306103628 hasConcept C182081679 @default.
- W306103628 hasConcept C33923547 @default.
- W306103628 hasConcept C41008148 @default.
- W306103628 hasConcept C4199805 @default.
- W306103628 hasConcept C49781872 @default.
- W306103628 hasConcept C62520636 @default.
- W306103628 hasConcept C79337645 @default.
- W306103628 hasConcept C99498987 @default.
- W306103628 hasConceptScore W306103628C105795698 @default.
- W306103628 hasConceptScore W306103628C11413529 @default.
- W306103628 hasConceptScore W306103628C115961682 @default.
- W306103628 hasConceptScore W306103628C121332964 @default.
- W306103628 hasConceptScore W306103628C153180895 @default.
- W306103628 hasConceptScore W306103628C154945302 @default.
- W306103628 hasConceptScore W306103628C163294075 @default.
- W306103628 hasConceptScore W306103628C163716315 @default.
- W306103628 hasConceptScore W306103628C182081679 @default.
- W306103628 hasConceptScore W306103628C33923547 @default.
- W306103628 hasConceptScore W306103628C41008148 @default.
- W306103628 hasConceptScore W306103628C4199805 @default.
- W306103628 hasConceptScore W306103628C49781872 @default.
- W306103628 hasConceptScore W306103628C62520636 @default.
- W306103628 hasConceptScore W306103628C79337645 @default.
- W306103628 hasConceptScore W306103628C99498987 @default.
- W306103628 hasLocation W3061036281 @default.
- W306103628 hasOpenAccess W306103628 @default.
- W306103628 hasPrimaryLocation W3061036281 @default.
- W306103628 hasRelatedWork W1514832754 @default.
- W306103628 hasRelatedWork W1530913745 @default.
- W306103628 hasRelatedWork W1987653544 @default.
- W306103628 hasRelatedWork W2012811622 @default.
- W306103628 hasRelatedWork W2033575494 @default.
- W306103628 hasRelatedWork W2033757130 @default.
- W306103628 hasRelatedWork W2052452674 @default.
- W306103628 hasRelatedWork W2090487079 @default.
- W306103628 hasRelatedWork W2109917387 @default.
- W306103628 hasRelatedWork W2123496732 @default.
- W306103628 hasRelatedWork W2160924560 @default.
- W306103628 hasRelatedWork W2162441712 @default.
- W306103628 hasRelatedWork W2528088588 @default.
- W306103628 hasRelatedWork W2571655022 @default.
- W306103628 hasRelatedWork W2749990203 @default.
- W306103628 hasRelatedWork W2980263616 @default.
- W306103628 hasRelatedWork W3025800623 @default.
- W306103628 hasRelatedWork W3114722801 @default.
- W306103628 hasRelatedWork W3189469410 @default.
- W306103628 hasRelatedWork W4291971 @default.
- W306103628 isParatext "false" @default.
- W306103628 isRetracted "false" @default.
- W306103628 magId "306103628" @default.
- W306103628 workType "article" @default.