Matches in SemOpenAlex for { <https://semopenalex.org/work/W3066024730> ?p ?o ?g. }
- W3066024730 endingPage "151522" @default.
- W3066024730 startingPage "151511" @default.
- W3066024730 abstract "The intermittent and uncertain nature of wind places a premium on accurate wind power forecasting for the reliable and efficient operation of power grids with large-scale wind power penetration. Herein, six-month-ahead wind power forecasting models were developed using tree-based learning algorithms. Three models were developed to investigate the impact of input data on forecasting accuracy. The first model was trained with the average and standard deviation of wind speed values measured at a height of 40 m with a 10-min sampling time. To evaluate the impact of sampling time on model performance, a second model was trained with wind speed values measured at a height of 40 m with 1-h, 12-h, and 24-h sampling times. To assess the effect of measuring height on model accuracy, the third model was trained with wind speed values measured at 40 m extrapolated from values measured at heights of 30 m and 10 m. Experiments revealed that using longer time intervals and height extrapolation leads to considerable accuracy degradation in forecasted models. Finally, to study the generalization ability of the forecasted models, they were tested against wind data measured at heights and locations different from what the models had been trained with. Simulation results substantiated that tree-based learning algorithms can be successfully adopted not only for long-term wind power forecasting, but for potential wind power forecasting at different heights and geographical locations." @default.
- W3066024730 created "2020-08-24" @default.
- W3066024730 creator A5016541935 @default.
- W3066024730 creator A5033347445 @default.
- W3066024730 creator A5047578139 @default.
- W3066024730 creator A5052698052 @default.
- W3066024730 creator A5058613643 @default.
- W3066024730 creator A5073263477 @default.
- W3066024730 date "2020-01-01" @default.
- W3066024730 modified "2023-09-30" @default.
- W3066024730 title "Long-Term Wind Power Forecasting Using Tree-Based Learning Algorithms" @default.
- W3066024730 cites W1168959737 @default.
- W3066024730 cites W1970071487 @default.
- W3066024730 cites W1984703120 @default.
- W3066024730 cites W2005854567 @default.
- W3066024730 cites W2016752668 @default.
- W3066024730 cites W2071641039 @default.
- W3066024730 cites W2102303403 @default.
- W3066024730 cites W2113350326 @default.
- W3066024730 cites W2142809749 @default.
- W3066024730 cites W2153676020 @default.
- W3066024730 cites W2163006955 @default.
- W3066024730 cites W2170800794 @default.
- W3066024730 cites W2480873604 @default.
- W3066024730 cites W2587103692 @default.
- W3066024730 cites W2606522347 @default.
- W3066024730 cites W2611960672 @default.
- W3066024730 cites W2749526959 @default.
- W3066024730 cites W2762869206 @default.
- W3066024730 cites W2775819639 @default.
- W3066024730 cites W2784125831 @default.
- W3066024730 cites W2790121183 @default.
- W3066024730 cites W2794103404 @default.
- W3066024730 cites W2801821709 @default.
- W3066024730 cites W2883971393 @default.
- W3066024730 cites W2895135437 @default.
- W3066024730 cites W2899717228 @default.
- W3066024730 cites W2926917581 @default.
- W3066024730 cites W2936236242 @default.
- W3066024730 cites W2944245994 @default.
- W3066024730 cites W2945236236 @default.
- W3066024730 cites W2946916295 @default.
- W3066024730 cites W2953670495 @default.
- W3066024730 cites W2956797857 @default.
- W3066024730 cites W2961539452 @default.
- W3066024730 cites W2964052759 @default.
- W3066024730 cites W2966392392 @default.
- W3066024730 cites W2973960501 @default.
- W3066024730 cites W2974181587 @default.
- W3066024730 cites W2980223420 @default.
- W3066024730 cites W2985419578 @default.
- W3066024730 cites W2990255447 @default.
- W3066024730 cites W2998687139 @default.
- W3066024730 cites W3000075806 @default.
- W3066024730 cites W3001566518 @default.
- W3066024730 cites W3004665554 @default.
- W3066024730 cites W3014278717 @default.
- W3066024730 doi "https://doi.org/10.1109/access.2020.3017442" @default.
- W3066024730 hasPublicationYear "2020" @default.
- W3066024730 type Work @default.
- W3066024730 sameAs 3066024730 @default.
- W3066024730 citedByCount "56" @default.
- W3066024730 countsByYear W30660247302021 @default.
- W3066024730 countsByYear W30660247302022 @default.
- W3066024730 countsByYear W30660247302023 @default.
- W3066024730 crossrefType "journal-article" @default.
- W3066024730 hasAuthorship W3066024730A5016541935 @default.
- W3066024730 hasAuthorship W3066024730A5033347445 @default.
- W3066024730 hasAuthorship W3066024730A5047578139 @default.
- W3066024730 hasAuthorship W3066024730A5052698052 @default.
- W3066024730 hasAuthorship W3066024730A5058613643 @default.
- W3066024730 hasAuthorship W3066024730A5073263477 @default.
- W3066024730 hasBestOaLocation W30660247301 @default.
- W3066024730 hasConcept C105795698 @default.
- W3066024730 hasConcept C106131492 @default.
- W3066024730 hasConcept C11413529 @default.
- W3066024730 hasConcept C119599485 @default.
- W3066024730 hasConcept C121332964 @default.
- W3066024730 hasConcept C127413603 @default.
- W3066024730 hasConcept C132459708 @default.
- W3066024730 hasConcept C140779682 @default.
- W3066024730 hasConcept C153294291 @default.
- W3066024730 hasConcept C161067210 @default.
- W3066024730 hasConcept C163258240 @default.
- W3066024730 hasConcept C205649164 @default.
- W3066024730 hasConcept C22679943 @default.
- W3066024730 hasConcept C2781084341 @default.
- W3066024730 hasConcept C31972630 @default.
- W3066024730 hasConcept C33923547 @default.
- W3066024730 hasConcept C39432304 @default.
- W3066024730 hasConcept C41008148 @default.
- W3066024730 hasConcept C61797465 @default.
- W3066024730 hasConcept C62520636 @default.
- W3066024730 hasConcept C78600449 @default.
- W3066024730 hasConcept C89227174 @default.
- W3066024730 hasConceptScore W3066024730C105795698 @default.
- W3066024730 hasConceptScore W3066024730C106131492 @default.
- W3066024730 hasConceptScore W3066024730C11413529 @default.