Matches in SemOpenAlex for { <https://semopenalex.org/work/W3066823240> ?p ?o ?g. }
- W3066823240 endingPage "015008" @default.
- W3066823240 startingPage "015008" @default.
- W3066823240 abstract "Abstract Sparse fault transient extraction is the primary step in rotating machine fault detection. In the present paper, periodical convolutional sparse representation (PCSR) is proposed for reliable separation of fault transients imbedded in raw vibration signals. Specifically, a sparse optimization problem of PCSR is constructed, in which periodical fault transients and harmonic components are sparsely represented by a learned dictionary and Fourier dictionary, and the periodicity and group sparsity of sparse coefficients related to sparse fault transients are also incorporated. Meanwhile, to further promote the sparsity of the sparse coefficients, a non-convex function is also introduced into the optimization problem. In addition, an iterative algorithm is developed to resolve the constructed sparse optimization problem, and the parameter selection method is also investigated to ensure the fault transient extraction ability of PCSR. The performance of the proposed PCSR is assessed via a synthetic and actual vibration signal. The results illustrate that the proposed PCSR has an excellent ability in fault transient extraction and machine fault detection." @default.
- W3066823240 created "2020-08-24" @default.
- W3066823240 creator A5015527442 @default.
- W3066823240 creator A5075819798 @default.
- W3066823240 creator A5078956553 @default.
- W3066823240 date "2020-10-27" @default.
- W3066823240 modified "2023-09-25" @default.
- W3066823240 title "Sparse feature extraction based on periodical convolutional sparse representation for fault detection of rotating machinery" @default.
- W3066823240 cites W1438045566 @default.
- W3066823240 cites W1948271374 @default.
- W3066823240 cites W1974658764 @default.
- W3066823240 cites W1975377467 @default.
- W3066823240 cites W1977454538 @default.
- W3066823240 cites W1984516393 @default.
- W3066823240 cites W1985110006 @default.
- W3066823240 cites W2010977676 @default.
- W3066823240 cites W2024237332 @default.
- W3066823240 cites W2040657720 @default.
- W3066823240 cites W2100705753 @default.
- W3066823240 cites W2115429828 @default.
- W3066823240 cites W2160547390 @default.
- W3066823240 cites W2190662802 @default.
- W3066823240 cites W2362164969 @default.
- W3066823240 cites W2363608638 @default.
- W3066823240 cites W2401383790 @default.
- W3066823240 cites W2464641472 @default.
- W3066823240 cites W2468832381 @default.
- W3066823240 cites W2483579737 @default.
- W3066823240 cites W2530662737 @default.
- W3066823240 cites W2583356199 @default.
- W3066823240 cites W2744242411 @default.
- W3066823240 cites W2758113345 @default.
- W3066823240 cites W2775599227 @default.
- W3066823240 cites W2791794685 @default.
- W3066823240 cites W2793164711 @default.
- W3066823240 cites W2799476788 @default.
- W3066823240 cites W2803509947 @default.
- W3066823240 cites W2827159893 @default.
- W3066823240 cites W2904378338 @default.
- W3066823240 cites W2950798207 @default.
- W3066823240 cites W2952234971 @default.
- W3066823240 cites W2963368219 @default.
- W3066823240 cites W2965331387 @default.
- W3066823240 cites W2967235543 @default.
- W3066823240 cites W2969434462 @default.
- W3066823240 cites W2982528991 @default.
- W3066823240 cites W3001975020 @default.
- W3066823240 cites W3004640153 @default.
- W3066823240 cites W3012134396 @default.
- W3066823240 cites W3014257064 @default.
- W3066823240 cites W3031064149 @default.
- W3066823240 doi "https://doi.org/10.1088/1361-6501/abb0bf" @default.
- W3066823240 hasPublicationYear "2020" @default.
- W3066823240 type Work @default.
- W3066823240 sameAs 3066823240 @default.
- W3066823240 citedByCount "14" @default.
- W3066823240 countsByYear W30668232402021 @default.
- W3066823240 countsByYear W30668232402022 @default.
- W3066823240 countsByYear W30668232402023 @default.
- W3066823240 crossrefType "journal-article" @default.
- W3066823240 hasAuthorship W3066823240A5015527442 @default.
- W3066823240 hasAuthorship W3066823240A5075819798 @default.
- W3066823240 hasAuthorship W3066823240A5078956553 @default.
- W3066823240 hasConcept C111919701 @default.
- W3066823240 hasConcept C11413529 @default.
- W3066823240 hasConcept C124066611 @default.
- W3066823240 hasConcept C127313418 @default.
- W3066823240 hasConcept C137836250 @default.
- W3066823240 hasConcept C152745839 @default.
- W3066823240 hasConcept C153180895 @default.
- W3066823240 hasConcept C154945302 @default.
- W3066823240 hasConcept C165205528 @default.
- W3066823240 hasConcept C172707124 @default.
- W3066823240 hasConcept C175551986 @default.
- W3066823240 hasConcept C2780799671 @default.
- W3066823240 hasConcept C41008148 @default.
- W3066823240 hasConcept C52622490 @default.
- W3066823240 hasConceptScore W3066823240C111919701 @default.
- W3066823240 hasConceptScore W3066823240C11413529 @default.
- W3066823240 hasConceptScore W3066823240C124066611 @default.
- W3066823240 hasConceptScore W3066823240C127313418 @default.
- W3066823240 hasConceptScore W3066823240C137836250 @default.
- W3066823240 hasConceptScore W3066823240C152745839 @default.
- W3066823240 hasConceptScore W3066823240C153180895 @default.
- W3066823240 hasConceptScore W3066823240C154945302 @default.
- W3066823240 hasConceptScore W3066823240C165205528 @default.
- W3066823240 hasConceptScore W3066823240C172707124 @default.
- W3066823240 hasConceptScore W3066823240C175551986 @default.
- W3066823240 hasConceptScore W3066823240C2780799671 @default.
- W3066823240 hasConceptScore W3066823240C41008148 @default.
- W3066823240 hasConceptScore W3066823240C52622490 @default.
- W3066823240 hasFunder F4320321001 @default.
- W3066823240 hasIssue "1" @default.
- W3066823240 hasLocation W30668232401 @default.
- W3066823240 hasOpenAccess W3066823240 @default.
- W3066823240 hasPrimaryLocation W30668232401 @default.
- W3066823240 hasRelatedWork W1964120219 @default.
- W3066823240 hasRelatedWork W2000165426 @default.