Matches in SemOpenAlex for { <https://semopenalex.org/work/W3067006404> ?p ?o ?g. }
- W3067006404 endingPage "e034723" @default.
- W3067006404 startingPage "e034723" @default.
- W3067006404 abstract "Introduction Depression and diabetes are highly disabling diseases with a high prevalence and high rate of comorbidity, particularly in low-income ethnic minority patients. Though comorbidity increases the risk of adverse outcomes and mortality, most clinical interventions target these diseases separately. Increasing physical activity might be effective to simultaneously lower depressive symptoms and improve glycaemic control. Self-management apps are a cost-effective, scalable and easy access treatment to increase physical activity. However, cutting-edge technological applications often do not reach vulnerable populations and are not tailored to an individual’s behaviour and characteristics. Tailoring of interventions using machine learning methods likely increases the effectiveness of the intervention. Methods and analysis In a three-arm randomised controlled trial, we will examine the effect of a text-messaging smartphone application to encourage physical activity in low-income ethnic minority patients with comorbid diabetes and depression. The adaptive intervention group receives messages chosen from different messaging banks by a reinforcement learning algorithm. The uniform random intervention group receives the same messages, but chosen from the messaging banks with equal probabilities. The control group receives a weekly mood message. We aim to recruit 276 adults from primary care clinics aged 18–75 years who have been diagnosed with current diabetes and show elevated depressive symptoms (Patient Health Questionnaire depression scale-8 (PHQ-8) >5). We will compare passively collected daily step counts, self-report PHQ-8 and most recent haemoglobin A1c from medical records at baseline and at intervention completion at 6-month follow-up. Ethics and dissemination The Institutional Review Board at the University of California San Francisco approved this study (IRB: 17-22608). We plan to submit manuscripts describing our user-designed methods and testing of the adaptive learning algorithm and will submit the results of the trial for publication in peer-reviewed journals and presentations at (inter)-national scientific meetings. Trial registration number NCT03490253 ; pre-results." @default.
- W3067006404 created "2020-08-24" @default.
- W3067006404 creator A5002159899 @default.
- W3067006404 creator A5007417529 @default.
- W3067006404 creator A5009670109 @default.
- W3067006404 creator A5027695955 @default.
- W3067006404 creator A5035375035 @default.
- W3067006404 creator A5036008511 @default.
- W3067006404 creator A5041049622 @default.
- W3067006404 creator A5048098394 @default.
- W3067006404 creator A5050618420 @default.
- W3067006404 creator A5060616224 @default.
- W3067006404 creator A5069476228 @default.
- W3067006404 creator A5074116667 @default.
- W3067006404 creator A5081827594 @default.
- W3067006404 creator A5084445671 @default.
- W3067006404 creator A5084545416 @default.
- W3067006404 date "2020-08-01" @default.
- W3067006404 modified "2023-10-09" @default.
- W3067006404 title "mHealth app using machine learning to increase physical activity in diabetes and depression: clinical trial protocol for the DIAMANTE Study" @default.
- W3067006404 cites W1912626880 @default.
- W3067006404 cites W2016294066 @default.
- W3067006404 cites W2017768678 @default.
- W3067006404 cites W2018614895 @default.
- W3067006404 cites W2028766465 @default.
- W3067006404 cites W2032191478 @default.
- W3067006404 cites W2044333539 @default.
- W3067006404 cites W2048325728 @default.
- W3067006404 cites W2068561834 @default.
- W3067006404 cites W2099511234 @default.
- W3067006404 cites W2104983431 @default.
- W3067006404 cites W2115243911 @default.
- W3067006404 cites W2121833483 @default.
- W3067006404 cites W2126459458 @default.
- W3067006404 cites W2131635313 @default.
- W3067006404 cites W2136608905 @default.
- W3067006404 cites W2162696461 @default.
- W3067006404 cites W2166023752 @default.
- W3067006404 cites W2383477184 @default.
- W3067006404 cites W2394827511 @default.
- W3067006404 cites W2523153599 @default.
- W3067006404 cites W2552305464 @default.
- W3067006404 cites W2751884637 @default.
- W3067006404 cites W2756328368 @default.
- W3067006404 cites W2783368859 @default.
- W3067006404 cites W2785014992 @default.
- W3067006404 cites W2790479710 @default.
- W3067006404 cites W2796615944 @default.
- W3067006404 cites W2802588208 @default.
- W3067006404 cites W2805973436 @default.
- W3067006404 cites W2809129970 @default.
- W3067006404 cites W2887074077 @default.
- W3067006404 cites W2889406366 @default.
- W3067006404 cites W2892348296 @default.
- W3067006404 cites W2904460099 @default.
- W3067006404 cites W2912386340 @default.
- W3067006404 cites W2913897984 @default.
- W3067006404 cites W2926287779 @default.
- W3067006404 cites W2946235112 @default.
- W3067006404 cites W2976277449 @default.
- W3067006404 cites W2991170583 @default.
- W3067006404 cites W3102969100 @default.
- W3067006404 cites W3154933051 @default.
- W3067006404 cites W4210651889 @default.
- W3067006404 cites W4211241272 @default.
- W3067006404 doi "https://doi.org/10.1136/bmjopen-2019-034723" @default.
- W3067006404 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7443305" @default.
- W3067006404 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32819981" @default.
- W3067006404 hasPublicationYear "2020" @default.
- W3067006404 type Work @default.
- W3067006404 sameAs 3067006404 @default.
- W3067006404 citedByCount "51" @default.
- W3067006404 countsByYear W30670064042021 @default.
- W3067006404 countsByYear W30670064042022 @default.
- W3067006404 countsByYear W30670064042023 @default.
- W3067006404 crossrefType "journal-article" @default.
- W3067006404 hasAuthorship W3067006404A5002159899 @default.
- W3067006404 hasAuthorship W3067006404A5007417529 @default.
- W3067006404 hasAuthorship W3067006404A5009670109 @default.
- W3067006404 hasAuthorship W3067006404A5027695955 @default.
- W3067006404 hasAuthorship W3067006404A5035375035 @default.
- W3067006404 hasAuthorship W3067006404A5036008511 @default.
- W3067006404 hasAuthorship W3067006404A5041049622 @default.
- W3067006404 hasAuthorship W3067006404A5048098394 @default.
- W3067006404 hasAuthorship W3067006404A5050618420 @default.
- W3067006404 hasAuthorship W3067006404A5060616224 @default.
- W3067006404 hasAuthorship W3067006404A5069476228 @default.
- W3067006404 hasAuthorship W3067006404A5074116667 @default.
- W3067006404 hasAuthorship W3067006404A5081827594 @default.
- W3067006404 hasAuthorship W3067006404A5084445671 @default.
- W3067006404 hasAuthorship W3067006404A5084545416 @default.
- W3067006404 hasBestOaLocation W30670064041 @default.
- W3067006404 hasConcept C118552586 @default.
- W3067006404 hasConcept C126322002 @default.
- W3067006404 hasConcept C134018914 @default.
- W3067006404 hasConcept C139719470 @default.
- W3067006404 hasConcept C162324750 @default.
- W3067006404 hasConcept C168563851 @default.