Matches in SemOpenAlex for { <https://semopenalex.org/work/W3067903099> ?p ?o ?g. }
- W3067903099 endingPage "9" @default.
- W3067903099 startingPage "1" @default.
- W3067903099 abstract "The increasing market interest in coffee beverage, lead coffee growers around the world to adopt more efficient methods to select the best-quality coffee beans. Currently, coffee beans selection is carried out either manually, which is a costly and unreliable process, or using electronic sorting machines, which are often inefficient because some coffee beans defects, such as sour and immature beans, have similar spectral response patterns. In this sense, the present work aimed to assess coffee beans quality using both computer vision and machine learning techniques, such as Support Vector Machine (SVM), Deep Neural Network (DNN) and Random Forest (RF). For this purpose, an algorithm written in Python language was developed to extract shape and color features from coffee beans images. The obtained dataset was then used as input to the machine learning algorithms. The data reported in this study pointed to the importance of color descriptors for classifying coffee beans defects. Among the variables used, the components from RGB (Red, Green and Blue) and HSV (Hue, Saturation and Value) color spaces presented the most relevant contribution for the classification models. Also, the results reported in this study provides evidence that computer vision along with machine learning algorithms can be used to identify and classify coffee beans with a very high accuracy (> 90%). Key words: Deep neural network; classification; artificial intelligence; image processing; granulometry." @default.
- W3067903099 created "2020-08-24" @default.
- W3067903099 creator A5013063157 @default.
- W3067903099 creator A5017980555 @default.
- W3067903099 creator A5052021474 @default.
- W3067903099 creator A5059061858 @default.
- W3067903099 creator A5066660566 @default.
- W3067903099 creator A5079945274 @default.
- W3067903099 date "2020-01-01" @default.
- W3067903099 modified "2023-09-29" @default.
- W3067903099 title "Quality assessment of coffee beans through computer vision and machine learning algorithms" @default.
- W3067903099 cites W1786006256 @default.
- W3067903099 cites W1861627441 @default.
- W3067903099 cites W1911842519 @default.
- W3067903099 cites W1997219130 @default.
- W3067903099 cites W2000161769 @default.
- W3067903099 cites W2004607709 @default.
- W3067903099 cites W2006516462 @default.
- W3067903099 cites W2015014195 @default.
- W3067903099 cites W2016001035 @default.
- W3067903099 cites W2017592521 @default.
- W3067903099 cites W2018654829 @default.
- W3067903099 cites W2081649656 @default.
- W3067903099 cites W2092671995 @default.
- W3067903099 cites W2142894633 @default.
- W3067903099 cites W2150290369 @default.
- W3067903099 cites W2164777277 @default.
- W3067903099 cites W2261059368 @default.
- W3067903099 cites W2271840356 @default.
- W3067903099 cites W2275574767 @default.
- W3067903099 cites W2469440724 @default.
- W3067903099 cites W2582743722 @default.
- W3067903099 cites W273955616 @default.
- W3067903099 cites W2765857848 @default.
- W3067903099 cites W2927014389 @default.
- W3067903099 cites W2979535898 @default.
- W3067903099 cites W3004896309 @default.
- W3067903099 cites W3123769268 @default.
- W3067903099 cites W1577146479 @default.
- W3067903099 doi "https://doi.org/10.25186/.v15i.1752" @default.
- W3067903099 hasPublicationYear "2020" @default.
- W3067903099 type Work @default.
- W3067903099 sameAs 3067903099 @default.
- W3067903099 citedByCount "3" @default.
- W3067903099 countsByYear W30679030992022 @default.
- W3067903099 countsByYear W30679030992023 @default.
- W3067903099 crossrefType "journal-article" @default.
- W3067903099 hasAuthorship W3067903099A5013063157 @default.
- W3067903099 hasAuthorship W3067903099A5017980555 @default.
- W3067903099 hasAuthorship W3067903099A5052021474 @default.
- W3067903099 hasAuthorship W3067903099A5059061858 @default.
- W3067903099 hasAuthorship W3067903099A5066660566 @default.
- W3067903099 hasAuthorship W3067903099A5079945274 @default.
- W3067903099 hasBestOaLocation W30679030991 @default.
- W3067903099 hasConcept C111919701 @default.
- W3067903099 hasConcept C11413529 @default.
- W3067903099 hasConcept C115961682 @default.
- W3067903099 hasConcept C119857082 @default.
- W3067903099 hasConcept C12267149 @default.
- W3067903099 hasConcept C126537357 @default.
- W3067903099 hasConcept C127413603 @default.
- W3067903099 hasConcept C154945302 @default.
- W3067903099 hasConcept C159047783 @default.
- W3067903099 hasConcept C169258074 @default.
- W3067903099 hasConcept C185592680 @default.
- W3067903099 hasConcept C2522874641 @default.
- W3067903099 hasConcept C2779801959 @default.
- W3067903099 hasConcept C2961294 @default.
- W3067903099 hasConcept C2993527415 @default.
- W3067903099 hasConcept C3020347786 @default.
- W3067903099 hasConcept C31903555 @default.
- W3067903099 hasConcept C36372059 @default.
- W3067903099 hasConcept C41008148 @default.
- W3067903099 hasConcept C50644808 @default.
- W3067903099 hasConcept C519991488 @default.
- W3067903099 hasConcept C5339829 @default.
- W3067903099 hasConcept C82990744 @default.
- W3067903099 hasConcept C86803240 @default.
- W3067903099 hasConcept C88463610 @default.
- W3067903099 hasConceptScore W3067903099C111919701 @default.
- W3067903099 hasConceptScore W3067903099C11413529 @default.
- W3067903099 hasConceptScore W3067903099C115961682 @default.
- W3067903099 hasConceptScore W3067903099C119857082 @default.
- W3067903099 hasConceptScore W3067903099C12267149 @default.
- W3067903099 hasConceptScore W3067903099C126537357 @default.
- W3067903099 hasConceptScore W3067903099C127413603 @default.
- W3067903099 hasConceptScore W3067903099C154945302 @default.
- W3067903099 hasConceptScore W3067903099C159047783 @default.
- W3067903099 hasConceptScore W3067903099C169258074 @default.
- W3067903099 hasConceptScore W3067903099C185592680 @default.
- W3067903099 hasConceptScore W3067903099C2522874641 @default.
- W3067903099 hasConceptScore W3067903099C2779801959 @default.
- W3067903099 hasConceptScore W3067903099C2961294 @default.
- W3067903099 hasConceptScore W3067903099C2993527415 @default.
- W3067903099 hasConceptScore W3067903099C3020347786 @default.
- W3067903099 hasConceptScore W3067903099C31903555 @default.
- W3067903099 hasConceptScore W3067903099C36372059 @default.
- W3067903099 hasConceptScore W3067903099C41008148 @default.