Matches in SemOpenAlex for { <https://semopenalex.org/work/W3067981314> ?p ?o ?g. }
- W3067981314 abstract "Point cloud registration is a fundamental problem in 3D computer vision, graphics and robotics. For the last few decades, existing registration algorithms have struggled in situations with large transformations, noise, and time constraints. In this paper, we introduce Deep Gaussian Mixture Registration (DeepGMR), the first learning-based registration method that explicitly leverages a probabilistic registration paradigm by formulating registration as the minimization of KL-divergence between two probability distributions modeled as mixtures of Gaussians. We design a neural network that extracts pose-invariant correspondences between raw point clouds and Gaussian Mixture Model (GMM) parameters and two differentiable compute blocks that recover the optimal transformation from matched GMM parameters. This construction allows the network learn an SE(3)-invariant feature space, producing a global registration method that is real-time, generalizable, and robust to noise. Across synthetic and real-world data, our proposed method shows favorable performance when compared with state-of-the-art geometry-based and learning-based registration methods." @default.
- W3067981314 created "2020-08-24" @default.
- W3067981314 creator A5014707300 @default.
- W3067981314 creator A5027610215 @default.
- W3067981314 creator A5042045648 @default.
- W3067981314 creator A5056503617 @default.
- W3067981314 creator A5058911745 @default.
- W3067981314 creator A5085870393 @default.
- W3067981314 date "2020-08-20" @default.
- W3067981314 modified "2023-09-24" @default.
- W3067981314 title "DeepGMR: Learning Latent Gaussian Mixture Models for Registration" @default.
- W3067981314 cites W1522301498 @default.
- W3067981314 cites W1599434464 @default.
- W3067981314 cites W1663973292 @default.
- W3067981314 cites W1920022804 @default.
- W3067981314 cites W1957167950 @default.
- W3067981314 cites W1967368660 @default.
- W3067981314 cites W2004312117 @default.
- W3067981314 cites W2012502415 @default.
- W3067981314 cites W2019648365 @default.
- W3067981314 cites W2049633694 @default.
- W3067981314 cites W2049981393 @default.
- W3067981314 cites W2058535340 @default.
- W3067981314 cites W2063549868 @default.
- W3067981314 cites W2085261163 @default.
- W3067981314 cites W2103420503 @default.
- W3067981314 cites W2114354851 @default.
- W3067981314 cites W2118877769 @default.
- W3067981314 cites W2119851068 @default.
- W3067981314 cites W2128019145 @default.
- W3067981314 cites W2134236847 @default.
- W3067981314 cites W2150190641 @default.
- W3067981314 cites W2172953088 @default.
- W3067981314 cites W2185581835 @default.
- W3067981314 cites W2271206385 @default.
- W3067981314 cites W2344109021 @default.
- W3067981314 cites W2560609797 @default.
- W3067981314 cites W2594495318 @default.
- W3067981314 cites W2788158258 @default.
- W3067981314 cites W2884745741 @default.
- W3067981314 cites W2895180691 @default.
- W3067981314 cites W2899771611 @default.
- W3067981314 cites W2938428612 @default.
- W3067981314 cites W2939201152 @default.
- W3067981314 cites W2948196881 @default.
- W3067981314 cites W2961443823 @default.
- W3067981314 cites W2962843082 @default.
- W3067981314 cites W2963081068 @default.
- W3067981314 cites W2963121255 @default.
- W3067981314 cites W2963264709 @default.
- W3067981314 cites W2964094494 @default.
- W3067981314 cites W2964109313 @default.
- W3067981314 cites W2971088236 @default.
- W3067981314 cites W2979400304 @default.
- W3067981314 cites W2979750740 @default.
- W3067981314 cites W2986382673 @default.
- W3067981314 cites W3001254461 @default.
- W3067981314 doi "https://doi.org/10.48550/arxiv.2008.09088" @default.
- W3067981314 hasPublicationYear "2020" @default.
- W3067981314 type Work @default.
- W3067981314 sameAs 3067981314 @default.
- W3067981314 citedByCount "2" @default.
- W3067981314 countsByYear W30679813142021 @default.
- W3067981314 crossrefType "posted-content" @default.
- W3067981314 hasAuthorship W3067981314A5014707300 @default.
- W3067981314 hasAuthorship W3067981314A5027610215 @default.
- W3067981314 hasAuthorship W3067981314A5042045648 @default.
- W3067981314 hasAuthorship W3067981314A5056503617 @default.
- W3067981314 hasAuthorship W3067981314A5058911745 @default.
- W3067981314 hasAuthorship W3067981314A5085870393 @default.
- W3067981314 hasBestOaLocation W30679813141 @default.
- W3067981314 hasConcept C115961682 @default.
- W3067981314 hasConcept C121332964 @default.
- W3067981314 hasConcept C121684516 @default.
- W3067981314 hasConcept C131979681 @default.
- W3067981314 hasConcept C134306372 @default.
- W3067981314 hasConcept C147764199 @default.
- W3067981314 hasConcept C153180895 @default.
- W3067981314 hasConcept C154945302 @default.
- W3067981314 hasConcept C163716315 @default.
- W3067981314 hasConcept C166704113 @default.
- W3067981314 hasConcept C190470478 @default.
- W3067981314 hasConcept C199360897 @default.
- W3067981314 hasConcept C202615002 @default.
- W3067981314 hasConcept C21442007 @default.
- W3067981314 hasConcept C31972630 @default.
- W3067981314 hasConcept C33923547 @default.
- W3067981314 hasConcept C34413123 @default.
- W3067981314 hasConcept C37914503 @default.
- W3067981314 hasConcept C41008148 @default.
- W3067981314 hasConcept C50644808 @default.
- W3067981314 hasConcept C61224824 @default.
- W3067981314 hasConcept C62520636 @default.
- W3067981314 hasConcept C90509273 @default.
- W3067981314 hasConceptScore W3067981314C115961682 @default.
- W3067981314 hasConceptScore W3067981314C121332964 @default.
- W3067981314 hasConceptScore W3067981314C121684516 @default.
- W3067981314 hasConceptScore W3067981314C131979681 @default.
- W3067981314 hasConceptScore W3067981314C134306372 @default.
- W3067981314 hasConceptScore W3067981314C147764199 @default.