Matches in SemOpenAlex for { <https://semopenalex.org/work/W306811085> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W306811085 abstract "The metal industry is continuously searching for new materials with improved mechanical properties. Nanocrystalline, nanostructured and ultrafine-grained materials offer properties that are vastly different from and often superior to those of the conventional microcrystalline materials [1].Grain size refinement by severe plastic deformation (SPD) is a processing technique that introduces nanoscale structures into the material, including dislocation substructures, nanotwins, and nanoscale precipitates, all of which can further improve the material’s mechanical strength[1].Among the SPD techniques, High Pressure Torsion (HPT) process is one of the most powerful techniques to obtain ultrafine-grained (UFG) materials, leading to non-homogeneous deformation with large strain gradient[2]. A test specimen, often a disc, is placed between two anvils. Once the pressure is applied, one anvil is rotated with respect to the other. Due to friction in the contact surfaces between the specimen and the anvils, the specimen is deformed by shear force. The main volume of the specimen is strained under hydrostatic compression, which will repress any fracture in the work piece.[3] It enables the grain refinement of bulk materials until a saturation region is reached where no further microstructural refinement can be observed[4].The production of nanoscale structures by HPT is nowadays very well-known and the problem has shifted from their production to their characterization[5].Electron Backscatter Diffraction (EBSD) is commonly used to characterize UFG metals and alloys, with grain sizes down to sub-micron scale. However, the spatial resolution of the EBSD technique, even in the latest field emission gun (FEG) scanning electron microscope (SEM), is limited to about 20 nm for dense materials, and 50 nm for lighter materials. In addition, these values represent the resolution parallel to the sample tilt axis, but for EBSD the sample should be tilt to a high angle, tipically 70o from horizontal and the spatial resolution is approximately three times worse down the tilted suface. Clearly conventional EBSD in SEM can not be applied as a routine characterization tool for nanostructured materials.[5]The transmission electron microscope (TEM) is generally considered today the tool of choice for the microstructural analysis of materials at the nanoscale[7]. It has the necessary spatial resolution, electron diffraction analysis enables the measurement of crystallographic orientations on the nanometre scale and recent developments in automated electron diffraction systems utilizing precision techniques are promising for enabling rapid collection of orientation maps on truly nanocrystalline materials. However, TEM analyses require significant technical expertise and are relatively difficult to perform[1]. Bright or dark field images can be difficult to interpret in terms of grain size and, although automated diffraction techniques do exist in the TEM, they generally suffer in terms of speed or angular resolution when compared to EBSD[5].A great advance would be to marry the routine quantitative capability of automated EBSD with the spatial resolution of TEM[7]. In the last 2 years there is a significant interest in thedevelopment of an alternative electron diffraction technique[1]. A new approach to SEM-based diffraction has emerged, namely using an electron transparent sample in a SEM coupled with conventional EBSD hardware and software. This technique, referred to as transmission EBSD (t-EBSD: Keller and Geiss, 2012) or SEM transmission Kikuchi difracction (TKD: Trimby, 2012) enables spatial resolutions better than 10 nm, and it is ideal for routine EBSD characterization of both nanostructured and highly deformed samples[8].The aim of this Master Thesis is to determine the optimum settings for the different operating parameters of the electron microscope in order to get the maximum possible resolution and be able to observe samples severely deformed by HPT with small grain size, by transmission Kikuchi diffraction in SEM. And subsequently compare the results between both normal EBSD and TKD techniques" @default.
- W306811085 created "2016-06-24" @default.
- W306811085 creator A5079813766 @default.
- W306811085 date "2013-01-01" @default.
- W306811085 modified "2023-09-26" @default.
- W306811085 title "Investigation of heavily deformed and dual phase materials by means of Transmission Kikuchi Diffraction" @default.
- W306811085 cites W2002151980 @default.
- W306811085 cites W2075333783 @default.
- W306811085 cites W2169519104 @default.
- W306811085 cites W2189062973 @default.
- W306811085 hasPublicationYear "2013" @default.
- W306811085 type Work @default.
- W306811085 sameAs 306811085 @default.
- W306811085 citedByCount "0" @default.
- W306811085 crossrefType "dissertation" @default.
- W306811085 hasAuthorship W306811085A5079813766 @default.
- W306811085 hasConcept C121332964 @default.
- W306811085 hasConcept C140676511 @default.
- W306811085 hasConcept C159985019 @default.
- W306811085 hasConcept C171250308 @default.
- W306811085 hasConcept C191897082 @default.
- W306811085 hasConcept C192191005 @default.
- W306811085 hasConcept C192562407 @default.
- W306811085 hasConcept C26771246 @default.
- W306811085 hasConcept C2776808300 @default.
- W306811085 hasConcept C2777618503 @default.
- W306811085 hasConcept C27805521 @default.
- W306811085 hasConcept C2910081258 @default.
- W306811085 hasConcept C45206210 @default.
- W306811085 hasConcept C87976508 @default.
- W306811085 hasConcept C97355855 @default.
- W306811085 hasConceptScore W306811085C121332964 @default.
- W306811085 hasConceptScore W306811085C140676511 @default.
- W306811085 hasConceptScore W306811085C159985019 @default.
- W306811085 hasConceptScore W306811085C171250308 @default.
- W306811085 hasConceptScore W306811085C191897082 @default.
- W306811085 hasConceptScore W306811085C192191005 @default.
- W306811085 hasConceptScore W306811085C192562407 @default.
- W306811085 hasConceptScore W306811085C26771246 @default.
- W306811085 hasConceptScore W306811085C2776808300 @default.
- W306811085 hasConceptScore W306811085C2777618503 @default.
- W306811085 hasConceptScore W306811085C27805521 @default.
- W306811085 hasConceptScore W306811085C2910081258 @default.
- W306811085 hasConceptScore W306811085C45206210 @default.
- W306811085 hasConceptScore W306811085C87976508 @default.
- W306811085 hasConceptScore W306811085C97355855 @default.
- W306811085 hasLocation W3068110851 @default.
- W306811085 hasOpenAccess W306811085 @default.
- W306811085 hasPrimaryLocation W3068110851 @default.
- W306811085 hasRelatedWork W1534151747 @default.
- W306811085 hasRelatedWork W1883398492 @default.
- W306811085 hasRelatedWork W1964835054 @default.
- W306811085 hasRelatedWork W2004681366 @default.
- W306811085 hasRelatedWork W2005031324 @default.
- W306811085 hasRelatedWork W2011554297 @default.
- W306811085 hasRelatedWork W2018304880 @default.
- W306811085 hasRelatedWork W2043436692 @default.
- W306811085 hasRelatedWork W2070981339 @default.
- W306811085 hasRelatedWork W2089715181 @default.
- W306811085 hasRelatedWork W2100388916 @default.
- W306811085 hasRelatedWork W2104431036 @default.
- W306811085 hasRelatedWork W2170703506 @default.
- W306811085 hasRelatedWork W2184495602 @default.
- W306811085 hasRelatedWork W2530867060 @default.
- W306811085 hasRelatedWork W270391233 @default.
- W306811085 hasRelatedWork W2884297307 @default.
- W306811085 hasRelatedWork W43478054 @default.
- W306811085 hasRelatedWork W850060839 @default.
- W306811085 hasRelatedWork W2064910727 @default.
- W306811085 isParatext "false" @default.
- W306811085 isRetracted "false" @default.
- W306811085 magId "306811085" @default.
- W306811085 workType "dissertation" @default.