Matches in SemOpenAlex for { <https://semopenalex.org/work/W3068965660> ?p ?o ?g. }
- W3068965660 endingPage "101538" @default.
- W3068965660 startingPage "101538" @default.
- W3068965660 abstract "High-quality temperature data at a finer spatio-temporal scale is critical for analyzing the risk of heat exposure and hazards in urban environments. The variability of urban landscapes makes cities a challenging environment for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts; first, the spatio-temporal granularities are too coarse, and second, the inability to track the ambient air temperature (AAT) instead of land surface temperature (LST). Overcoming these limitations requires developing models for mapping the variability in heat exposure in urban environments. We investigated an integrated approach for mapping urban heat hazards by harnessing a diverse set of high-resolution measurements, including both ground-based and satellite-based temperature data. We mounted vehicle-borne mobile sensors on city buses to collect high-frequency temperature data throughout 2018 and 2019. Our research also incorporated key biophysical parameters and Landsat 8 LST data into Random Forest regression modeling to map the hyperlocal variability of heat hazard over areas not covered by the buses. The vehicle-borne temperature sensor data showed large temperature differences within the city, with the largest variations of up to 10 °C and morning-afternoon diurnal changes at a magnitude around 20 °C. Random Forest modeling on noontime (11:30 am – 12:30 pm) data to predict AAT produced accurate results with a mean absolute error of 0.29 °C and successfully showcased the enhanced granularity in urban heat hazard mapping. These maps revealed well-defined hyperlocal variabilities in AAT, which were not evident with other research approaches. Urban core and dense residential areas revealed larger than 5 °C AAT differences from their nearby green spaces. The sensing framework developed in this study can be easily implemented in other urban areas, and findings from this study will be beneficial in understanding the heat vulnerabilities of individual communities. It can be used by the local government to devise targeted hazard mitigation efforts such as increasing green space, developing better heat-safety policies, and exposure warning for workers." @default.
- W3068965660 created "2020-08-24" @default.
- W3068965660 creator A5013423437 @default.
- W3068965660 creator A5036828236 @default.
- W3068965660 creator A5048372527 @default.
- W3068965660 creator A5062210776 @default.
- W3068965660 creator A5074162202 @default.
- W3068965660 creator A5082188602 @default.
- W3068965660 date "2020-11-01" @default.
- W3068965660 modified "2023-10-17" @default.
- W3068965660 title "Urban ambient air temperature estimation using hyperlocal data from smart vehicle-borne sensors" @default.
- W3068965660 cites W1698203258 @default.
- W3068965660 cites W1967113280 @default.
- W3068965660 cites W1984811700 @default.
- W3068965660 cites W2011094999 @default.
- W3068965660 cites W2020977453 @default.
- W3068965660 cites W2024211359 @default.
- W3068965660 cites W2029828371 @default.
- W3068965660 cites W2035930426 @default.
- W3068965660 cites W2038774500 @default.
- W3068965660 cites W2039736923 @default.
- W3068965660 cites W2040698596 @default.
- W3068965660 cites W2048850076 @default.
- W3068965660 cites W2070493638 @default.
- W3068965660 cites W2087379584 @default.
- W3068965660 cites W2088187245 @default.
- W3068965660 cites W2091147036 @default.
- W3068965660 cites W2097941935 @default.
- W3068965660 cites W2100107696 @default.
- W3068965660 cites W2102182928 @default.
- W3068965660 cites W2106784657 @default.
- W3068965660 cites W2112662635 @default.
- W3068965660 cites W2144395796 @default.
- W3068965660 cites W2158555077 @default.
- W3068965660 cites W2198515906 @default.
- W3068965660 cites W2439517233 @default.
- W3068965660 cites W2803533787 @default.
- W3068965660 cites W2914776798 @default.
- W3068965660 doi "https://doi.org/10.1016/j.compenvurbsys.2020.101538" @default.
- W3068965660 hasPublicationYear "2020" @default.
- W3068965660 type Work @default.
- W3068965660 sameAs 3068965660 @default.
- W3068965660 citedByCount "12" @default.
- W3068965660 countsByYear W30689656602020 @default.
- W3068965660 countsByYear W30689656602021 @default.
- W3068965660 countsByYear W30689656602022 @default.
- W3068965660 countsByYear W30689656602023 @default.
- W3068965660 crossrefType "journal-article" @default.
- W3068965660 hasAuthorship W3068965660A5013423437 @default.
- W3068965660 hasAuthorship W3068965660A5036828236 @default.
- W3068965660 hasAuthorship W3068965660A5048372527 @default.
- W3068965660 hasAuthorship W3068965660A5062210776 @default.
- W3068965660 hasAuthorship W3068965660A5074162202 @default.
- W3068965660 hasAuthorship W3068965660A5082188602 @default.
- W3068965660 hasConcept C119857082 @default.
- W3068965660 hasConcept C124101348 @default.
- W3068965660 hasConcept C153294291 @default.
- W3068965660 hasConcept C169258074 @default.
- W3068965660 hasConcept C178790620 @default.
- W3068965660 hasConcept C185592680 @default.
- W3068965660 hasConcept C205649164 @default.
- W3068965660 hasConcept C2778597888 @default.
- W3068965660 hasConcept C36464697 @default.
- W3068965660 hasConcept C39432304 @default.
- W3068965660 hasConcept C41008148 @default.
- W3068965660 hasConcept C49261128 @default.
- W3068965660 hasConcept C54005896 @default.
- W3068965660 hasConcept C62649853 @default.
- W3068965660 hasConceptScore W3068965660C119857082 @default.
- W3068965660 hasConceptScore W3068965660C124101348 @default.
- W3068965660 hasConceptScore W3068965660C153294291 @default.
- W3068965660 hasConceptScore W3068965660C169258074 @default.
- W3068965660 hasConceptScore W3068965660C178790620 @default.
- W3068965660 hasConceptScore W3068965660C185592680 @default.
- W3068965660 hasConceptScore W3068965660C205649164 @default.
- W3068965660 hasConceptScore W3068965660C2778597888 @default.
- W3068965660 hasConceptScore W3068965660C36464697 @default.
- W3068965660 hasConceptScore W3068965660C39432304 @default.
- W3068965660 hasConceptScore W3068965660C41008148 @default.
- W3068965660 hasConceptScore W3068965660C49261128 @default.
- W3068965660 hasConceptScore W3068965660C54005896 @default.
- W3068965660 hasConceptScore W3068965660C62649853 @default.
- W3068965660 hasLocation W30689656601 @default.
- W3068965660 hasOpenAccess W3068965660 @default.
- W3068965660 hasPrimaryLocation W30689656601 @default.
- W3068965660 hasRelatedWork W1546989560 @default.
- W3068965660 hasRelatedWork W2003943341 @default.
- W3068965660 hasRelatedWork W2193749736 @default.
- W3068965660 hasRelatedWork W2385102367 @default.
- W3068965660 hasRelatedWork W2389058308 @default.
- W3068965660 hasRelatedWork W2748952813 @default.
- W3068965660 hasRelatedWork W2890621173 @default.
- W3068965660 hasRelatedWork W3017730864 @default.
- W3068965660 hasRelatedWork W4386259002 @default.
- W3068965660 hasRelatedWork W2547006382 @default.
- W3068965660 hasVolume "84" @default.
- W3068965660 isParatext "false" @default.
- W3068965660 isRetracted "false" @default.