Matches in SemOpenAlex for { <https://semopenalex.org/work/W3077205433> ?p ?o ?g. }
- W3077205433 abstract "Abstract Background Clinical registers constitute an invaluable resource in the medical data-driven decision making context. Accurate machine learning and data mining approaches on these data can lead to faster diagnosis, definition of tailored interventions, and improved outcome prediction. A typical issue when implementing such approaches is the almost unavoidable presence of missing values in the collected data. In this work, we propose an imputation algorithm based on a mutual information-weighted k-nearest neighbours approach, able to handle the simultaneous presence of missing information in different types of variables. We developed and validated the method on a clinical register, constituted by the information collected over subsequent screening visits of a cohort of patients affected by amyotrophic lateral sclerosis. Methods For each subject with missing data to be imputed, we create a feature vector constituted by the information collected over his/her first three months of visits. This vector is used as sample in a k-nearest neighbours procedure, in order to select, among the other patients, the ones with the most similar temporal evolution of the disease over time. An ad hoc similarity metric was implemented for the sample comparison, capable of handling the different nature of the data, the presence of multiple missing values and include the cross-information among features captured by the mutual information statistic. Results We validated the proposed imputation method on an independent test set, comparing its performance with those of three state-of-the-art competitors, resulting in better performance. We further assessed the validity of our algorithm by comparing the performance of a survival classifier built on the data imputed with our method versus the one built on the data imputed with the best-performing competitor. Conclusions Imputation of missing data is a crucial –and often mandatory– step when working with real-world datasets. The algorithm proposed in this work could effectively impute an amyotrophic lateral sclerosis clinical dataset, by handling the temporal and the mixed-type nature of the data and by exploiting the cross-information among features. We also showed how the imputation quality can affect a machine learning task." @default.
- W3077205433 created "2020-08-24" @default.
- W3077205433 creator A5039343044 @default.
- W3077205433 creator A5046654136 @default.
- W3077205433 creator A5049549975 @default.
- W3077205433 creator A5066713645 @default.
- W3077205433 creator A5077821068 @default.
- W3077205433 creator A5090628289 @default.
- W3077205433 date "2020-08-01" @default.
- W3077205433 modified "2023-10-02" @default.
- W3077205433 title "Exploiting mutual information for the imputation of static and dynamic mixed-type clinical data with an adaptive k-nearest neighbours approach" @default.
- W3077205433 cites W1822348759 @default.
- W3077205433 cites W1919216911 @default.
- W3077205433 cites W1980074688 @default.
- W3077205433 cites W2020279151 @default.
- W3077205433 cites W2029678309 @default.
- W3077205433 cites W2032065177 @default.
- W3077205433 cites W2064186732 @default.
- W3077205433 cites W2084413241 @default.
- W3077205433 cites W2085508623 @default.
- W3077205433 cites W2108381339 @default.
- W3077205433 cites W2113559481 @default.
- W3077205433 cites W2116814040 @default.
- W3077205433 cites W2124885415 @default.
- W3077205433 cites W2133305315 @default.
- W3077205433 cites W2141019052 @default.
- W3077205433 cites W2142178163 @default.
- W3077205433 cites W2162313689 @default.
- W3077205433 cites W2162772535 @default.
- W3077205433 cites W2166561686 @default.
- W3077205433 cites W2496114304 @default.
- W3077205433 cites W2513203369 @default.
- W3077205433 cites W2516038852 @default.
- W3077205433 cites W2594396441 @default.
- W3077205433 cites W2741416490 @default.
- W3077205433 cites W2771817472 @default.
- W3077205433 cites W2775056555 @default.
- W3077205433 cites W2795490756 @default.
- W3077205433 cites W2803287810 @default.
- W3077205433 cites W2805089815 @default.
- W3077205433 cites W2889063507 @default.
- W3077205433 cites W2916933545 @default.
- W3077205433 cites W2949211189 @default.
- W3077205433 cites W2953532875 @default.
- W3077205433 cites W2963360736 @default.
- W3077205433 cites W4211041983 @default.
- W3077205433 cites W4235907943 @default.
- W3077205433 cites W4237606974 @default.
- W3077205433 cites W4252684946 @default.
- W3077205433 doi "https://doi.org/10.1186/s12911-020-01166-2" @default.
- W3077205433 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7439551" @default.
- W3077205433 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32819346" @default.
- W3077205433 hasPublicationYear "2020" @default.
- W3077205433 type Work @default.
- W3077205433 sameAs 3077205433 @default.
- W3077205433 citedByCount "9" @default.
- W3077205433 countsByYear W30772054332021 @default.
- W3077205433 countsByYear W30772054332022 @default.
- W3077205433 countsByYear W30772054332023 @default.
- W3077205433 crossrefType "journal-article" @default.
- W3077205433 hasAuthorship W3077205433A5039343044 @default.
- W3077205433 hasAuthorship W3077205433A5046654136 @default.
- W3077205433 hasAuthorship W3077205433A5049549975 @default.
- W3077205433 hasAuthorship W3077205433A5066713645 @default.
- W3077205433 hasAuthorship W3077205433A5077821068 @default.
- W3077205433 hasAuthorship W3077205433A5090628289 @default.
- W3077205433 hasBestOaLocation W30772054331 @default.
- W3077205433 hasConcept C105795698 @default.
- W3077205433 hasConcept C113238511 @default.
- W3077205433 hasConcept C119857082 @default.
- W3077205433 hasConcept C124101348 @default.
- W3077205433 hasConcept C152139883 @default.
- W3077205433 hasConcept C154945302 @default.
- W3077205433 hasConcept C33923547 @default.
- W3077205433 hasConcept C41008148 @default.
- W3077205433 hasConcept C58041806 @default.
- W3077205433 hasConcept C89128539 @default.
- W3077205433 hasConcept C9357733 @default.
- W3077205433 hasConceptScore W3077205433C105795698 @default.
- W3077205433 hasConceptScore W3077205433C113238511 @default.
- W3077205433 hasConceptScore W3077205433C119857082 @default.
- W3077205433 hasConceptScore W3077205433C124101348 @default.
- W3077205433 hasConceptScore W3077205433C152139883 @default.
- W3077205433 hasConceptScore W3077205433C154945302 @default.
- W3077205433 hasConceptScore W3077205433C33923547 @default.
- W3077205433 hasConceptScore W3077205433C41008148 @default.
- W3077205433 hasConceptScore W3077205433C58041806 @default.
- W3077205433 hasConceptScore W3077205433C89128539 @default.
- W3077205433 hasConceptScore W3077205433C9357733 @default.
- W3077205433 hasIssue "S5" @default.
- W3077205433 hasLocation W30772054331 @default.
- W3077205433 hasLocation W30772054332 @default.
- W3077205433 hasLocation W30772054333 @default.
- W3077205433 hasLocation W30772054334 @default.
- W3077205433 hasOpenAccess W3077205433 @default.
- W3077205433 hasPrimaryLocation W30772054331 @default.
- W3077205433 hasRelatedWork W1495018677 @default.
- W3077205433 hasRelatedWork W1622931018 @default.
- W3077205433 hasRelatedWork W1684820054 @default.
- W3077205433 hasRelatedWork W1999846678 @default.