Matches in SemOpenAlex for { <https://semopenalex.org/work/W3078151390> ?p ?o ?g. }
- W3078151390 endingPage "42849" @default.
- W3078151390 startingPage "42842" @default.
- W3078151390 abstract "The optimization of materials is challenging as it often involves simultaneous manipulation of an assembly of condition parameters, which generates an enormous combinational space. Thus, optimization models and algorithms are widely adopted to accelerate material design and optimization. However, most optimization strategies can poorly handle multiple parameters simultaneously with limited prior knowledge. Herein, we describe a novel systematic optimization strategy, namely, machine-learning-assisted differential evolution, which combines machine learning and the evolutionary algorithm together, for zero-prior-data, rapid, and simultaneous optimization of multiple objectives. The strategy enables the evolutionary algorithm to learn so as to accelerate the optimization process, and also to identify quantitative interactions between the condition parameters and functional characteristics of the material. The performance of the strategy is verified by in silico simulations, as well as an application on simultaneously optimizing three characteristics, namely, water contact angle, oil absorption capacity, and mechanical strength, of an electrospun polystyrene/polyacrylonitrile (PS/PAN) material as a potential sorbent for a marine oil spill. With only 50 tests, the optimal fabrication parameters were successfully located from a combinatorial space of 50 000 possibilities. The presented platform technique offers a universal enabling technology to identify the optimal conditions rapidly from a daunting parameter space to synthesize materials with multiple desired functionalities." @default.
- W3078151390 created "2020-08-24" @default.
- W3078151390 creator A5008724466 @default.
- W3078151390 creator A5022411149 @default.
- W3078151390 creator A5034459958 @default.
- W3078151390 creator A5078080137 @default.
- W3078151390 creator A5087108704 @default.
- W3078151390 date "2020-08-17" @default.
- W3078151390 modified "2023-09-27" @default.
- W3078151390 title "Harnessing a Novel Machine-Learning-Assisted Evolutionary Algorithm to Co-optimize Three Characteristics of an Electrospun Oil Sorbent" @default.
- W3078151390 cites W1507599800 @default.
- W3078151390 cites W1595159159 @default.
- W3078151390 cites W1968909734 @default.
- W3078151390 cites W1995509964 @default.
- W3078151390 cites W2003657827 @default.
- W3078151390 cites W2026258334 @default.
- W3078151390 cites W2122825543 @default.
- W3078151390 cites W2149199519 @default.
- W3078151390 cites W2157713892 @default.
- W3078151390 cites W2233789132 @default.
- W3078151390 cites W2288993673 @default.
- W3078151390 cites W2312325831 @default.
- W3078151390 cites W2317866228 @default.
- W3078151390 cites W2326973391 @default.
- W3078151390 cites W2333115330 @default.
- W3078151390 cites W2338867775 @default.
- W3078151390 cites W2530367073 @default.
- W3078151390 cites W2619239042 @default.
- W3078151390 cites W2747592475 @default.
- W3078151390 cites W2761640040 @default.
- W3078151390 cites W2762633377 @default.
- W3078151390 cites W2785942661 @default.
- W3078151390 cites W2797440425 @default.
- W3078151390 cites W2800722845 @default.
- W3078151390 cites W2801441400 @default.
- W3078151390 cites W2802814754 @default.
- W3078151390 cites W2804344979 @default.
- W3078151390 cites W2806994486 @default.
- W3078151390 cites W2919303270 @default.
- W3078151390 cites W2940190061 @default.
- W3078151390 cites W2951009204 @default.
- W3078151390 cites W2952144034 @default.
- W3078151390 cites W2979809658 @default.
- W3078151390 doi "https://doi.org/10.1021/acsami.0c11667" @default.
- W3078151390 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32805104" @default.
- W3078151390 hasPublicationYear "2020" @default.
- W3078151390 type Work @default.
- W3078151390 sameAs 3078151390 @default.
- W3078151390 citedByCount "9" @default.
- W3078151390 countsByYear W30781513902021 @default.
- W3078151390 countsByYear W30781513902022 @default.
- W3078151390 countsByYear W30781513902023 @default.
- W3078151390 crossrefType "journal-article" @default.
- W3078151390 hasAuthorship W3078151390A5008724466 @default.
- W3078151390 hasAuthorship W3078151390A5022411149 @default.
- W3078151390 hasAuthorship W3078151390A5034459958 @default.
- W3078151390 hasAuthorship W3078151390A5078080137 @default.
- W3078151390 hasAuthorship W3078151390A5087108704 @default.
- W3078151390 hasConcept C111919701 @default.
- W3078151390 hasConcept C11413529 @default.
- W3078151390 hasConcept C137836250 @default.
- W3078151390 hasConcept C154945302 @default.
- W3078151390 hasConcept C159149176 @default.
- W3078151390 hasConcept C159985019 @default.
- W3078151390 hasConcept C192562407 @default.
- W3078151390 hasConcept C2776056205 @default.
- W3078151390 hasConcept C2778049539 @default.
- W3078151390 hasConcept C41008148 @default.
- W3078151390 hasConcept C521977710 @default.
- W3078151390 hasConcept C74750220 @default.
- W3078151390 hasConcept C98045186 @default.
- W3078151390 hasConceptScore W3078151390C111919701 @default.
- W3078151390 hasConceptScore W3078151390C11413529 @default.
- W3078151390 hasConceptScore W3078151390C137836250 @default.
- W3078151390 hasConceptScore W3078151390C154945302 @default.
- W3078151390 hasConceptScore W3078151390C159149176 @default.
- W3078151390 hasConceptScore W3078151390C159985019 @default.
- W3078151390 hasConceptScore W3078151390C192562407 @default.
- W3078151390 hasConceptScore W3078151390C2776056205 @default.
- W3078151390 hasConceptScore W3078151390C2778049539 @default.
- W3078151390 hasConceptScore W3078151390C41008148 @default.
- W3078151390 hasConceptScore W3078151390C521977710 @default.
- W3078151390 hasConceptScore W3078151390C74750220 @default.
- W3078151390 hasConceptScore W3078151390C98045186 @default.
- W3078151390 hasIssue "38" @default.
- W3078151390 hasLocation W30781513901 @default.
- W3078151390 hasLocation W30781513902 @default.
- W3078151390 hasOpenAccess W3078151390 @default.
- W3078151390 hasPrimaryLocation W30781513901 @default.
- W3078151390 hasRelatedWork W1880866131 @default.
- W3078151390 hasRelatedWork W2021957875 @default.
- W3078151390 hasRelatedWork W2078187789 @default.
- W3078151390 hasRelatedWork W2366036732 @default.
- W3078151390 hasRelatedWork W2771247213 @default.
- W3078151390 hasRelatedWork W2902578258 @default.
- W3078151390 hasRelatedWork W3078151390 @default.
- W3078151390 hasRelatedWork W3188111058 @default.
- W3078151390 hasRelatedWork W4205992444 @default.