Matches in SemOpenAlex for { <https://semopenalex.org/work/W3079188960> ?p ?o ?g. }
- W3079188960 endingPage "4334" @default.
- W3079188960 startingPage "4322" @default.
- W3079188960 abstract "Quantification of coronary artery stenosis on X-ray angiography (XRA) images is of great importance during the intraoperative treatment of coronary artery disease. It serves to quantify the coronary artery stenosis by estimating the clinical morphological indices, which are essential in clinical decision making. However, stenosis quantification is still a challenging task due to the overlapping, diversity and small-size region of the stenosis in the XRA images. While efforts have been devoted to stenosis quantification through low-level features, these methods have difficulty in learning the real mapping from these features to the stenosis indices. These methods are still cumbersome and unreliable for the intraoperative procedures due to their two-phase quantification, which depends on the results of segmentation or reconstruction of the coronary artery. In this work, we are proposing a hierarchical attentive multi-view learning model (HEAL) to achieve a direct quantification of coronary artery stenosis, without the intermediate segmentation or reconstruction. We have designed a multi-view learning model to learn more complementary information of the stenosis from different views. For this purpose, an intra-view hierarchical attentive block is proposed to learn the discriminative information of stenosis. Additionally, a stenosis representation learning module is developed to extract the multi-scale features from the keyframe perspective for considering the clinical workflow. Finally, the morphological indices are directly estimated based on the multi-view feature embedding. Extensive experiment studies on clinical multi-manufacturer dataset consisting of 228 subjects show the superiority of our HEAL against nine comparing methods, including direct quantification methods and multi-view learning methods. The experimental results demonstrate the better clinical agreement between the ground truth and the prediction, which endows our proposed method with a great potential for the efficient intraoperative treatment of coronary artery disease." @default.
- W3079188960 created "2020-08-24" @default.
- W3079188960 creator A5000166507 @default.
- W3079188960 creator A5030430000 @default.
- W3079188960 creator A5055336250 @default.
- W3079188960 creator A5061444433 @default.
- W3079188960 creator A5070373092 @default.
- W3079188960 creator A5073429636 @default.
- W3079188960 creator A5074582540 @default.
- W3079188960 date "2020-12-01" @default.
- W3079188960 modified "2023-10-17" @default.
- W3079188960 title "Direct Quantification of Coronary Artery Stenosis Through Hierarchical Attentive Multi-View Learning" @default.
- W3079188960 cites W123601357 @default.
- W3079188960 cites W1602665277 @default.
- W3079188960 cites W1644641054 @default.
- W3079188960 cites W174262147 @default.
- W3079188960 cites W1975301892 @default.
- W3079188960 cites W1983364832 @default.
- W3079188960 cites W2048486843 @default.
- W3079188960 cites W2057990742 @default.
- W3079188960 cites W2072576640 @default.
- W3079188960 cites W2085789144 @default.
- W3079188960 cites W2089760288 @default.
- W3079188960 cites W2092939357 @default.
- W3079188960 cites W2096663965 @default.
- W3079188960 cites W2111083777 @default.
- W3079188960 cites W2115801545 @default.
- W3079188960 cites W2153259204 @default.
- W3079188960 cites W2186500555 @default.
- W3079188960 cites W2295244092 @default.
- W3079188960 cites W2295452827 @default.
- W3079188960 cites W2527026635 @default.
- W3079188960 cites W2551431664 @default.
- W3079188960 cites W2592939477 @default.
- W3079188960 cites W2618019088 @default.
- W3079188960 cites W2618456149 @default.
- W3079188960 cites W2737156152 @default.
- W3079188960 cites W2757633676 @default.
- W3079188960 cites W2760122612 @default.
- W3079188960 cites W2799162093 @default.
- W3079188960 cites W2801275424 @default.
- W3079188960 cites W2887832763 @default.
- W3079188960 cites W2898267195 @default.
- W3079188960 cites W2899335103 @default.
- W3079188960 cites W2921493150 @default.
- W3079188960 cites W2962850830 @default.
- W3079188960 cites W2963091558 @default.
- W3079188960 cites W2977457995 @default.
- W3079188960 cites W2979828372 @default.
- W3079188960 cites W2990848657 @default.
- W3079188960 cites W3017135785 @default.
- W3079188960 cites W4249992252 @default.
- W3079188960 doi "https://doi.org/10.1109/tmi.2020.3017275" @default.
- W3079188960 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32804646" @default.
- W3079188960 hasPublicationYear "2020" @default.
- W3079188960 type Work @default.
- W3079188960 sameAs 3079188960 @default.
- W3079188960 citedByCount "23" @default.
- W3079188960 countsByYear W30791889602020 @default.
- W3079188960 countsByYear W30791889602021 @default.
- W3079188960 countsByYear W30791889602022 @default.
- W3079188960 countsByYear W30791889602023 @default.
- W3079188960 crossrefType "journal-article" @default.
- W3079188960 hasAuthorship W3079188960A5000166507 @default.
- W3079188960 hasAuthorship W3079188960A5030430000 @default.
- W3079188960 hasAuthorship W3079188960A5055336250 @default.
- W3079188960 hasAuthorship W3079188960A5061444433 @default.
- W3079188960 hasAuthorship W3079188960A5070373092 @default.
- W3079188960 hasAuthorship W3079188960A5073429636 @default.
- W3079188960 hasAuthorship W3079188960A5074582540 @default.
- W3079188960 hasConcept C126838900 @default.
- W3079188960 hasConcept C138885662 @default.
- W3079188960 hasConcept C153180895 @default.
- W3079188960 hasConcept C154945302 @default.
- W3079188960 hasConcept C164705383 @default.
- W3079188960 hasConcept C2776401178 @default.
- W3079188960 hasConcept C2776820930 @default.
- W3079188960 hasConcept C2778213512 @default.
- W3079188960 hasConcept C2780007028 @default.
- W3079188960 hasConcept C31972630 @default.
- W3079188960 hasConcept C41008148 @default.
- W3079188960 hasConcept C41895202 @default.
- W3079188960 hasConcept C71924100 @default.
- W3079188960 hasConcept C89600930 @default.
- W3079188960 hasConceptScore W3079188960C126838900 @default.
- W3079188960 hasConceptScore W3079188960C138885662 @default.
- W3079188960 hasConceptScore W3079188960C153180895 @default.
- W3079188960 hasConceptScore W3079188960C154945302 @default.
- W3079188960 hasConceptScore W3079188960C164705383 @default.
- W3079188960 hasConceptScore W3079188960C2776401178 @default.
- W3079188960 hasConceptScore W3079188960C2776820930 @default.
- W3079188960 hasConceptScore W3079188960C2778213512 @default.
- W3079188960 hasConceptScore W3079188960C2780007028 @default.
- W3079188960 hasConceptScore W3079188960C31972630 @default.
- W3079188960 hasConceptScore W3079188960C41008148 @default.
- W3079188960 hasConceptScore W3079188960C41895202 @default.
- W3079188960 hasConceptScore W3079188960C71924100 @default.
- W3079188960 hasConceptScore W3079188960C89600930 @default.