Matches in SemOpenAlex for { <https://semopenalex.org/work/W3079312613> ?p ?o ?g. }
- W3079312613 endingPage "101660" @default.
- W3079312613 startingPage "101660" @default.
- W3079312613 abstract "Spatial crime simulations contribute to our understanding of the mechanisms that drive crime and can support decision-makers in developing effective crime reduction strategies. Agent-based models that integrate geographical environments to generate crime patterns have emerged in recent years, although data-driven crime simulations are scarce. This article (1) identifies numerous important drivers of crime patterns, (2) collects relevant, openly available data sources to build a GIS-layer with static and dynamic geographical, as well as temporal features relevant to crime, (3) builds a virtual urban environment with these layers, in which individual offender agents navigate, (4) proposes a data-driven decision-making process using machine-learning for the agents to decide whether to engage in criminal activity based on their perception of the environment and, finally, (5) generates fine-grained crime patterns in a simulated urban environment. The novelty of this work lies in the various large-scale data layers, the integration of machine learning at individual agent level to process the data layers, and the high resolution of the resulting predictions. The results show that the spatial, temporal, and interaction layers are all required to predict the top street segments with the highest number of crimes. In addition, the spatial layer is the most informative, which means that spatial data contributes most to predictive performance. Thus, these findings highlight the importance of the inclusion of various open data sources and the potential of theory-informed, data-driven simulations for the purpose of crime prediction. The resulting model is applicable as a predictive tool and as a test platform to support crime reduction. • Crime prediction models are used to target areas at higher risk for crime • The simulation predicts the top (3%) street segments with highest number of crimes • Data-driven agents process static and dynamic environmental data by mean of machine learning • Ambient population and mobility data are included in the simulation • Spatial data contributes the most to model performance" @default.
- W3079312613 created "2020-08-24" @default.
- W3079312613 creator A5006940379 @default.
- W3079312613 creator A5064999614 @default.
- W3079312613 creator A5076056000 @default.
- W3079312613 date "2021-09-01" @default.
- W3079312613 modified "2023-10-18" @default.
- W3079312613 title "A data-driven agent-based simulation to predict crime patterns in an urban environment" @default.
- W3079312613 cites W1479955723 @default.
- W3079312613 cites W1964809608 @default.
- W3079312613 cites W1979949281 @default.
- W3079312613 cites W1981745880 @default.
- W3079312613 cites W1985160654 @default.
- W3079312613 cites W1985289266 @default.
- W3079312613 cites W1987685062 @default.
- W3079312613 cites W1991944037 @default.
- W3079312613 cites W1997064047 @default.
- W3079312613 cites W1997166069 @default.
- W3079312613 cites W2010261067 @default.
- W3079312613 cites W2017053662 @default.
- W3079312613 cites W2020763685 @default.
- W3079312613 cites W2021204860 @default.
- W3079312613 cites W2024173855 @default.
- W3079312613 cites W2024177114 @default.
- W3079312613 cites W2027328206 @default.
- W3079312613 cites W2027643805 @default.
- W3079312613 cites W2029967121 @default.
- W3079312613 cites W2034495455 @default.
- W3079312613 cites W2040856198 @default.
- W3079312613 cites W2049393311 @default.
- W3079312613 cites W2056583384 @default.
- W3079312613 cites W2062518320 @default.
- W3079312613 cites W2067635996 @default.
- W3079312613 cites W2068868156 @default.
- W3079312613 cites W2069302583 @default.
- W3079312613 cites W2086260676 @default.
- W3079312613 cites W2103008355 @default.
- W3079312613 cites W2107156834 @default.
- W3079312613 cites W2108436931 @default.
- W3079312613 cites W2112294099 @default.
- W3079312613 cites W2113870875 @default.
- W3079312613 cites W2115025109 @default.
- W3079312613 cites W2124491398 @default.
- W3079312613 cites W2126643972 @default.
- W3079312613 cites W2135008766 @default.
- W3079312613 cites W2137416279 @default.
- W3079312613 cites W2148227415 @default.
- W3079312613 cites W2150474497 @default.
- W3079312613 cites W2153882207 @default.
- W3079312613 cites W2160169976 @default.
- W3079312613 cites W2162951498 @default.
- W3079312613 cites W2163055135 @default.
- W3079312613 cites W2164183644 @default.
- W3079312613 cites W2167256300 @default.
- W3079312613 cites W2312575566 @default.
- W3079312613 cites W2321357844 @default.
- W3079312613 cites W2338119252 @default.
- W3079312613 cites W2430978553 @default.
- W3079312613 cites W2469861356 @default.
- W3079312613 cites W2551625545 @default.
- W3079312613 cites W2565426728 @default.
- W3079312613 cites W2579277721 @default.
- W3079312613 cites W2592521303 @default.
- W3079312613 cites W2617292922 @default.
- W3079312613 cites W2617716437 @default.
- W3079312613 cites W2632538366 @default.
- W3079312613 cites W2752663873 @default.
- W3079312613 cites W2885650385 @default.
- W3079312613 cites W2896968102 @default.
- W3079312613 cites W2905576123 @default.
- W3079312613 cites W2913867241 @default.
- W3079312613 cites W2920329036 @default.
- W3079312613 cites W2963190848 @default.
- W3079312613 cites W3041132178 @default.
- W3079312613 cites W3125240265 @default.
- W3079312613 cites W4240584755 @default.
- W3079312613 cites W4246003469 @default.
- W3079312613 cites W4249855545 @default.
- W3079312613 cites W976226029 @default.
- W3079312613 doi "https://doi.org/10.1016/j.compenvurbsys.2021.101660" @default.
- W3079312613 hasPublicationYear "2021" @default.
- W3079312613 type Work @default.
- W3079312613 sameAs 3079312613 @default.
- W3079312613 citedByCount "15" @default.
- W3079312613 countsByYear W30793126132021 @default.
- W3079312613 countsByYear W30793126132022 @default.
- W3079312613 countsByYear W30793126132023 @default.
- W3079312613 crossrefType "journal-article" @default.
- W3079312613 hasAuthorship W3079312613A5006940379 @default.
- W3079312613 hasAuthorship W3079312613A5064999614 @default.
- W3079312613 hasAuthorship W3079312613A5076056000 @default.
- W3079312613 hasBestOaLocation W30793126131 @default.
- W3079312613 hasConcept C111919701 @default.
- W3079312613 hasConcept C119857082 @default.
- W3079312613 hasConcept C124101348 @default.
- W3079312613 hasConcept C138885662 @default.
- W3079312613 hasConcept C144024400 @default.
- W3079312613 hasConcept C154945302 @default.