Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080087551> ?p ?o ?g. }
- W3080087551 abstract "One of the main goals of neuroscience is to explain the basic functions of the brain such as thought, learning, and control of movement. A comprehensive explanation of these functions must span different temporal and spatial scales to connect the workings of the brain at the molecular level to the circuit level to the level of behavior. This dissertation focuses on learning and formation of long-term memories - functions that are mediated by changes in synaptic connectivity. I examine the effects of learning on the connectivity and dynamics of networks in the brain and artificial neural networks. In the first chapter of this dissertation, I propose that many basic structural and dynamical properties of local cortical circuits result from associative learning. This hypothesis is tested in a network model of inhibitory and excitatory McCulloch and Pitts neurons loaded with associative sequences to capacity. I solve the learning problem analytically and numerically to show that such networks exhibit many ubiquities properties of local cortical citrus. These include structural properties, such as the probabilities of connections between inhibitory and excitatory neurons, distributions of weights for these connection types, overexpression of specific 2- and 3-neuron motifs, along with various properties of network dynamics. Because signal transmission in the brain is accompanied by many sources of errors and noise, in the second chapter of this dissertation I explore the effect of such unavoidable hindrances on learning and network properties. I argue that noise should not be viewed as a nuisance, but that it is an essential component of the reliable learning mechanism implemented by the brain. To test this hypothesis, I formulate and solve a biologically constrained network model of associative sequence learning in the presence of errors and noise. The results reveal that noise during learning increases the probability of memory retrieval and that it is required for optimal recovery of stored information. In the last chapter, I transition from biologically plausible artificial neuron network models of learning to a machine learning application. I develop a methodology for real-time automated reconstruction of neurons from 3D stacks of optical microscopy images. The pipeline is based on deep convolutional neural networks and includes image compression, image enhancement, segmentation of neuron cell bodies, and neurite tracing. I show that artificial neural networks can be trained to effectively compress 3D stacks of optical microscopy images and significantly enhance the intensity of neurites, making the results amenable for fast and accurate reconstruction of neurons.--Author's abstract" @default.
- W3080087551 created "2020-09-01" @default.
- W3080087551 creator A5088141052 @default.
- W3080087551 date "2021-01-27" @default.
- W3080087551 modified "2023-10-06" @default.
- W3080087551 title "Associative learning in cortical and artificial neural networks" @default.
- W3080087551 cites W1522205897 @default.
- W3080087551 cites W1554944419 @default.
- W3080087551 cites W1576445389 @default.
- W3080087551 cites W1582051163 @default.
- W3080087551 cites W165729115 @default.
- W3080087551 cites W1686810756 @default.
- W3080087551 cites W1801922369 @default.
- W3080087551 cites W1841807818 @default.
- W3080087551 cites W1965680834 @default.
- W3080087551 cites W1965717823 @default.
- W3080087551 cites W1965762557 @default.
- W3080087551 cites W1966104725 @default.
- W3080087551 cites W1967084746 @default.
- W3080087551 cites W1969483458 @default.
- W3080087551 cites W1971536112 @default.
- W3080087551 cites W1973740179 @default.
- W3080087551 cites W1976738367 @default.
- W3080087551 cites W1981764342 @default.
- W3080087551 cites W1985392528 @default.
- W3080087551 cites W1995341919 @default.
- W3080087551 cites W1996342882 @default.
- W3080087551 cites W1998794714 @default.
- W3080087551 cites W1999149787 @default.
- W3080087551 cites W2001528712 @default.
- W3080087551 cites W2001570872 @default.
- W3080087551 cites W2002298833 @default.
- W3080087551 cites W2008284899 @default.
- W3080087551 cites W2008353316 @default.
- W3080087551 cites W2011525418 @default.
- W3080087551 cites W2020676607 @default.
- W3080087551 cites W2022820481 @default.
- W3080087551 cites W2030450972 @default.
- W3080087551 cites W2034131443 @default.
- W3080087551 cites W2038220177 @default.
- W3080087551 cites W2041601616 @default.
- W3080087551 cites W2041684917 @default.
- W3080087551 cites W2042967751 @default.
- W3080087551 cites W2047825791 @default.
- W3080087551 cites W2049219350 @default.
- W3080087551 cites W2052629386 @default.
- W3080087551 cites W2054870083 @default.
- W3080087551 cites W2059148040 @default.
- W3080087551 cites W2061628168 @default.
- W3080087551 cites W2062899906 @default.
- W3080087551 cites W2067723634 @default.
- W3080087551 cites W2074987446 @default.
- W3080087551 cites W2077208091 @default.
- W3080087551 cites W2079150153 @default.
- W3080087551 cites W2079600992 @default.
- W3080087551 cites W2079960018 @default.
- W3080087551 cites W2088446997 @default.
- W3080087551 cites W2089837563 @default.
- W3080087551 cites W2095705004 @default.
- W3080087551 cites W2100438317 @default.
- W3080087551 cites W2105011233 @default.
- W3080087551 cites W2105031232 @default.
- W3080087551 cites W2106566258 @default.
- W3080087551 cites W2106700142 @default.
- W3080087551 cites W2113345172 @default.
- W3080087551 cites W2128084896 @default.
- W3080087551 cites W2131215403 @default.
- W3080087551 cites W2133059825 @default.
- W3080087551 cites W2133602791 @default.
- W3080087551 cites W2133671888 @default.
- W3080087551 cites W2135046866 @default.
- W3080087551 cites W2135208959 @default.
- W3080087551 cites W2135369850 @default.
- W3080087551 cites W2137408158 @default.
- W3080087551 cites W2145656910 @default.
- W3080087551 cites W2147981220 @default.
- W3080087551 cites W2153201079 @default.
- W3080087551 cites W2153730779 @default.
- W3080087551 cites W2155754335 @default.
- W3080087551 cites W2156012604 @default.
- W3080087551 cites W2160308091 @default.
- W3080087551 cites W2161278885 @default.
- W3080087551 cites W2162407586 @default.
- W3080087551 cites W2166740761 @default.
- W3080087551 cites W2167822639 @default.
- W3080087551 cites W2171236529 @default.
- W3080087551 cites W2276533724 @default.
- W3080087551 cites W2327209428 @default.
- W3080087551 cites W2336636082 @default.
- W3080087551 cites W2473800551 @default.
- W3080087551 cites W2483701722 @default.
- W3080087551 cites W2595141634 @default.
- W3080087551 cites W2611250743 @default.
- W3080087551 cites W2621790546 @default.
- W3080087551 cites W2808882667 @default.
- W3080087551 cites W2923391066 @default.
- W3080087551 cites W2954160608 @default.
- W3080087551 doi "https://doi.org/10.17760/d20383702" @default.
- W3080087551 hasPublicationYear "2021" @default.
- W3080087551 type Work @default.