Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080107788> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3080107788 endingPage "1098" @default.
- W3080107788 startingPage "1085" @default.
- W3080107788 abstract "Sepsis is a major challenge in the field of medical science. It affects over a million patients annually and also increases the mortality rate. Generally, sepsis condition is not identified easily. Thus, an intensive analysis of patients is required for identifying sepsis in the Intensive Care Unit (ICU). In this research work, an outcome prediction based machine learning models for identifying different stages of sepsis is proposed. Machine Learning (ML) models can help to predict the current stage of sepsis using existing clinical measurements like clinical laboratory test values and crucial signs in which patients are at high risk. We explore four ML models namely XGBoost, Random Forest, Logistic Regression, and Support Vector Machine by utilizing clinical laboratory values and vital signs. The performance evaluation of the proposed and existing techniques is performed by considering the same dataset. These models achieve an AUC (Area under the Curve) 0.95, 0.91, 0.76, and 0.93, respectively, for recognition of sepsis. Experimental results demonstrate that the XGBoost model with 10-fold cross-validation performs well than other models across all the performance metrics." @default.
- W3080107788 created "2020-09-01" @default.
- W3080107788 creator A5024090801 @default.
- W3080107788 creator A5037963883 @default.
- W3080107788 creator A5049170264 @default.
- W3080107788 date "2020-08-14" @default.
- W3080107788 modified "2023-10-17" @default.
- W3080107788 title "Outcome Prediction of Patients for Different Stages of Sepsis Using Machine Learning Models" @default.
- W3080107788 cites W126266486 @default.
- W3080107788 cites W1488990065 @default.
- W3080107788 cites W1898928487 @default.
- W3080107788 cites W2082257894 @default.
- W3080107788 cites W2112940647 @default.
- W3080107788 cites W2144589352 @default.
- W3080107788 cites W2149684865 @default.
- W3080107788 cites W2187633770 @default.
- W3080107788 cites W2280404143 @default.
- W3080107788 cites W2282181907 @default.
- W3080107788 cites W2433832342 @default.
- W3080107788 cites W2515956763 @default.
- W3080107788 cites W2523834880 @default.
- W3080107788 cites W2746067197 @default.
- W3080107788 cites W2761160485 @default.
- W3080107788 cites W2776803885 @default.
- W3080107788 cites W2785987933 @default.
- W3080107788 cites W2786635213 @default.
- W3080107788 cites W2799880446 @default.
- W3080107788 cites W2888960301 @default.
- W3080107788 cites W2905315346 @default.
- W3080107788 cites W2911964244 @default.
- W3080107788 cites W2912708252 @default.
- W3080107788 cites W2915312288 @default.
- W3080107788 cites W2940553617 @default.
- W3080107788 cites W3102476541 @default.
- W3080107788 cites W3208084430 @default.
- W3080107788 doi "https://doi.org/10.1007/978-981-15-5341-7_82" @default.
- W3080107788 hasPublicationYear "2020" @default.
- W3080107788 type Work @default.
- W3080107788 sameAs 3080107788 @default.
- W3080107788 citedByCount "9" @default.
- W3080107788 countsByYear W30801077882021 @default.
- W3080107788 countsByYear W30801077882022 @default.
- W3080107788 countsByYear W30801077882023 @default.
- W3080107788 crossrefType "book-chapter" @default.
- W3080107788 hasAuthorship W3080107788A5024090801 @default.
- W3080107788 hasAuthorship W3080107788A5037963883 @default.
- W3080107788 hasAuthorship W3080107788A5049170264 @default.
- W3080107788 hasConcept C119857082 @default.
- W3080107788 hasConcept C12267149 @default.
- W3080107788 hasConcept C126322002 @default.
- W3080107788 hasConcept C144237770 @default.
- W3080107788 hasConcept C148220186 @default.
- W3080107788 hasConcept C151956035 @default.
- W3080107788 hasConcept C154945302 @default.
- W3080107788 hasConcept C169258074 @default.
- W3080107788 hasConcept C177713679 @default.
- W3080107788 hasConcept C2776376669 @default.
- W3080107788 hasConcept C2778384902 @default.
- W3080107788 hasConcept C2987404301 @default.
- W3080107788 hasConcept C33923547 @default.
- W3080107788 hasConcept C41008148 @default.
- W3080107788 hasConcept C45804977 @default.
- W3080107788 hasConcept C71924100 @default.
- W3080107788 hasConceptScore W3080107788C119857082 @default.
- W3080107788 hasConceptScore W3080107788C12267149 @default.
- W3080107788 hasConceptScore W3080107788C126322002 @default.
- W3080107788 hasConceptScore W3080107788C144237770 @default.
- W3080107788 hasConceptScore W3080107788C148220186 @default.
- W3080107788 hasConceptScore W3080107788C151956035 @default.
- W3080107788 hasConceptScore W3080107788C154945302 @default.
- W3080107788 hasConceptScore W3080107788C169258074 @default.
- W3080107788 hasConceptScore W3080107788C177713679 @default.
- W3080107788 hasConceptScore W3080107788C2776376669 @default.
- W3080107788 hasConceptScore W3080107788C2778384902 @default.
- W3080107788 hasConceptScore W3080107788C2987404301 @default.
- W3080107788 hasConceptScore W3080107788C33923547 @default.
- W3080107788 hasConceptScore W3080107788C41008148 @default.
- W3080107788 hasConceptScore W3080107788C45804977 @default.
- W3080107788 hasConceptScore W3080107788C71924100 @default.
- W3080107788 hasLocation W30801077881 @default.
- W3080107788 hasOpenAccess W3080107788 @default.
- W3080107788 hasPrimaryLocation W30801077881 @default.
- W3080107788 hasRelatedWork W1984498786 @default.
- W3080107788 hasRelatedWork W2000329364 @default.
- W3080107788 hasRelatedWork W2057630253 @default.
- W3080107788 hasRelatedWork W2274076556 @default.
- W3080107788 hasRelatedWork W2327606279 @default.
- W3080107788 hasRelatedWork W2331454882 @default.
- W3080107788 hasRelatedWork W2362037864 @default.
- W3080107788 hasRelatedWork W2474790959 @default.
- W3080107788 hasRelatedWork W2753993308 @default.
- W3080107788 hasRelatedWork W3191198889 @default.
- W3080107788 isParatext "false" @default.
- W3080107788 isRetracted "false" @default.
- W3080107788 magId "3080107788" @default.
- W3080107788 workType "book-chapter" @default.