Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080207839> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3080207839 abstract "Three-dimensional (3D) laser scanners have become a mainstream technology for the automatic assessment of pavement condition. The objective of this study is to leverage highly accurate 3D pavement data to train supervised machine learning models for pavement condition estimation using low-cost vehicle-mounted smartphone sensor data. First, the smartphone sensor data and 3D pavement data were registered on a common geographic information system (GIS) model of the road network. Second, recurrent neural networks (RNNs) with long short-term memory (LSTM) units were trained for the estimation of various distresses using smartphone sensor data as the input and 3D pavement data to provide the labels. Finally, the output of the models was accordingly postprocessed to provide distress values generally used for engineering decisions. The methodology was designed such that extensive calibration would not be required. When the Georgia Department of Transportation’s PAvement Condition Evaluation System (PACES) protocol was used as reference, the results presented here show that the proposed methodology can be used for estimating the IRI with a median absolute error (MAE) of 0.61 m/km (38.65 in./mi) and can estimate the average rut depth with a MAE of 4.19 mm (0.16 in.). The performance on cracking, raveling, and potholes was deemed unsatisfactory for engineering purposes." @default.
- W3080207839 created "2020-09-01" @default.
- W3080207839 creator A5035383838 @default.
- W3080207839 creator A5075247915 @default.
- W3080207839 date "2020-11-01" @default.
- W3080207839 modified "2023-09-29" @default.
- W3080207839 title "Training and Testing of Smartphone-Based Pavement Condition Estimation Models Using 3D Pavement Data" @default.
- W3080207839 cites W1838423138 @default.
- W3080207839 cites W1995759367 @default.
- W3080207839 cites W2006356907 @default.
- W3080207839 cites W2016892365 @default.
- W3080207839 cites W2063349855 @default.
- W3080207839 cites W2096045964 @default.
- W3080207839 cites W2097500895 @default.
- W3080207839 cites W2139336945 @default.
- W3080207839 cites W2158054751 @default.
- W3080207839 cites W2168463792 @default.
- W3080207839 cites W2521928520 @default.
- W3080207839 cites W2728032389 @default.
- W3080207839 cites W2745396798 @default.
- W3080207839 cites W2748643398 @default.
- W3080207839 cites W2769644921 @default.
- W3080207839 cites W2793748566 @default.
- W3080207839 cites W2803041422 @default.
- W3080207839 cites W2903167052 @default.
- W3080207839 cites W72888894 @default.
- W3080207839 doi "https://doi.org/10.1061/(asce)cp.1943-5487.0000925" @default.
- W3080207839 hasPublicationYear "2020" @default.
- W3080207839 type Work @default.
- W3080207839 sameAs 3080207839 @default.
- W3080207839 citedByCount "14" @default.
- W3080207839 countsByYear W30802078392021 @default.
- W3080207839 countsByYear W30802078392022 @default.
- W3080207839 countsByYear W30802078392023 @default.
- W3080207839 crossrefType "journal-article" @default.
- W3080207839 hasAuthorship W3080207839A5035383838 @default.
- W3080207839 hasAuthorship W3080207839A5075247915 @default.
- W3080207839 hasConcept C105795698 @default.
- W3080207839 hasConcept C124101348 @default.
- W3080207839 hasConcept C127413603 @default.
- W3080207839 hasConcept C153083717 @default.
- W3080207839 hasConcept C154945302 @default.
- W3080207839 hasConcept C165838908 @default.
- W3080207839 hasConcept C168056786 @default.
- W3080207839 hasConcept C205649164 @default.
- W3080207839 hasConcept C22212356 @default.
- W3080207839 hasConcept C2780996376 @default.
- W3080207839 hasConcept C33923547 @default.
- W3080207839 hasConcept C41008148 @default.
- W3080207839 hasConcept C44154836 @default.
- W3080207839 hasConcept C50644808 @default.
- W3080207839 hasConcept C58640448 @default.
- W3080207839 hasConcept C76893819 @default.
- W3080207839 hasConceptScore W3080207839C105795698 @default.
- W3080207839 hasConceptScore W3080207839C124101348 @default.
- W3080207839 hasConceptScore W3080207839C127413603 @default.
- W3080207839 hasConceptScore W3080207839C153083717 @default.
- W3080207839 hasConceptScore W3080207839C154945302 @default.
- W3080207839 hasConceptScore W3080207839C165838908 @default.
- W3080207839 hasConceptScore W3080207839C168056786 @default.
- W3080207839 hasConceptScore W3080207839C205649164 @default.
- W3080207839 hasConceptScore W3080207839C22212356 @default.
- W3080207839 hasConceptScore W3080207839C2780996376 @default.
- W3080207839 hasConceptScore W3080207839C33923547 @default.
- W3080207839 hasConceptScore W3080207839C41008148 @default.
- W3080207839 hasConceptScore W3080207839C44154836 @default.
- W3080207839 hasConceptScore W3080207839C50644808 @default.
- W3080207839 hasConceptScore W3080207839C58640448 @default.
- W3080207839 hasConceptScore W3080207839C76893819 @default.
- W3080207839 hasIssue "6" @default.
- W3080207839 hasLocation W30802078391 @default.
- W3080207839 hasOpenAccess W3080207839 @default.
- W3080207839 hasPrimaryLocation W30802078391 @default.
- W3080207839 hasRelatedWork W118045485 @default.
- W3080207839 hasRelatedWork W160850656 @default.
- W3080207839 hasRelatedWork W2589159149 @default.
- W3080207839 hasRelatedWork W4232778657 @default.
- W3080207839 hasRelatedWork W4241749761 @default.
- W3080207839 hasRelatedWork W4247672290 @default.
- W3080207839 hasRelatedWork W637411773 @default.
- W3080207839 hasRelatedWork W653928924 @default.
- W3080207839 hasRelatedWork W657307446 @default.
- W3080207839 hasRelatedWork W88169023 @default.
- W3080207839 hasVolume "34" @default.
- W3080207839 isParatext "false" @default.
- W3080207839 isRetracted "false" @default.
- W3080207839 magId "3080207839" @default.
- W3080207839 workType "article" @default.