Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080211037> ?p ?o ?g. }
- W3080211037 endingPage "372" @default.
- W3080211037 startingPage "362" @default.
- W3080211037 abstract "Recent studies have increasingly shown that the chemical modification of mRNA plays an important role in the regulation of gene expression. N7-methylguanosine (m7G) is a type of positively-charged mRNA modification that plays an essential role for efficient gene expression and cell viability. However, the research on m7G has received little attention to date. Bioinformatics tools can be applied as auxiliary methods to identify m7G sites in transcriptomes. In this study, we develop a novel interpretable machine learning-based approach termed XG-m7G for the differentiation of m7G sites using the XGBoost algorithm and six different types of sequence-encoding schemes. Both 10-fold and jackknife cross-validation tests indicate that XG-m7G outperforms iRNA-m7G. Moreover, using the powerful SHAP algorithm, this new framework also provides desirable interpretations of the model performance and highlights the most important features for identifying m7G sites. XG-m7G is anticipated to serve as a useful tool and guide for researchers in their future studies of mRNA modification sites. Recent studies have increasingly shown that the chemical modification of mRNA plays an important role in the regulation of gene expression. N7-methylguanosine (m7G) is a type of positively-charged mRNA modification that plays an essential role for efficient gene expression and cell viability. However, the research on m7G has received little attention to date. Bioinformatics tools can be applied as auxiliary methods to identify m7G sites in transcriptomes. In this study, we develop a novel interpretable machine learning-based approach termed XG-m7G for the differentiation of m7G sites using the XGBoost algorithm and six different types of sequence-encoding schemes. Both 10-fold and jackknife cross-validation tests indicate that XG-m7G outperforms iRNA-m7G. Moreover, using the powerful SHAP algorithm, this new framework also provides desirable interpretations of the model performance and highlights the most important features for identifying m7G sites. XG-m7G is anticipated to serve as a useful tool and guide for researchers in their future studies of mRNA modification sites." @default.
- W3080211037 created "2020-09-01" @default.
- W3080211037 creator A5005014252 @default.
- W3080211037 creator A5009378480 @default.
- W3080211037 creator A5012709797 @default.
- W3080211037 creator A5056151279 @default.
- W3080211037 creator A5063409460 @default.
- W3080211037 creator A5066126756 @default.
- W3080211037 date "2020-12-01" @default.
- W3080211037 modified "2023-10-18" @default.
- W3080211037 title "An Interpretable Prediction Model for Identifying N7-Methylguanosine Sites Based on XGBoost and SHAP" @default.
- W3080211037 cites W1976552381 @default.
- W3080211037 cites W2004030503 @default.
- W3080211037 cites W2004132756 @default.
- W3080211037 cites W2052694544 @default.
- W3080211037 cites W2053502852 @default.
- W3080211037 cites W2071723661 @default.
- W3080211037 cites W2117348845 @default.
- W3080211037 cites W2120026469 @default.
- W3080211037 cites W2170747616 @default.
- W3080211037 cites W2180304330 @default.
- W3080211037 cites W2287984595 @default.
- W3080211037 cites W2598495276 @default.
- W3080211037 cites W2800074215 @default.
- W3080211037 cites W2810225085 @default.
- W3080211037 cites W2890951984 @default.
- W3080211037 cites W2891114629 @default.
- W3080211037 cites W2891893703 @default.
- W3080211037 cites W2896605526 @default.
- W3080211037 cites W2909409778 @default.
- W3080211037 cites W2914284561 @default.
- W3080211037 cites W2915489297 @default.
- W3080211037 cites W2922210059 @default.
- W3080211037 cites W2940752764 @default.
- W3080211037 cites W2965901104 @default.
- W3080211037 cites W2966361671 @default.
- W3080211037 cites W2967960129 @default.
- W3080211037 cites W2969993699 @default.
- W3080211037 cites W2970111059 @default.
- W3080211037 cites W2971551439 @default.
- W3080211037 cites W2972223935 @default.
- W3080211037 cites W2977291005 @default.
- W3080211037 cites W2979937512 @default.
- W3080211037 cites W2980737062 @default.
- W3080211037 cites W3004131332 @default.
- W3080211037 cites W3020045074 @default.
- W3080211037 cites W3026425509 @default.
- W3080211037 doi "https://doi.org/10.1016/j.omtn.2020.08.022" @default.
- W3080211037 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7533297" @default.
- W3080211037 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33230441" @default.
- W3080211037 hasPublicationYear "2020" @default.
- W3080211037 type Work @default.
- W3080211037 sameAs 3080211037 @default.
- W3080211037 citedByCount "80" @default.
- W3080211037 countsByYear W30802110372020 @default.
- W3080211037 countsByYear W30802110372021 @default.
- W3080211037 countsByYear W30802110372022 @default.
- W3080211037 countsByYear W30802110372023 @default.
- W3080211037 crossrefType "journal-article" @default.
- W3080211037 hasAuthorship W3080211037A5005014252 @default.
- W3080211037 hasAuthorship W3080211037A5009378480 @default.
- W3080211037 hasAuthorship W3080211037A5012709797 @default.
- W3080211037 hasAuthorship W3080211037A5056151279 @default.
- W3080211037 hasAuthorship W3080211037A5063409460 @default.
- W3080211037 hasAuthorship W3080211037A5066126756 @default.
- W3080211037 hasBestOaLocation W30802110371 @default.
- W3080211037 hasConcept C104317684 @default.
- W3080211037 hasConcept C105580179 @default.
- W3080211037 hasConcept C150194340 @default.
- W3080211037 hasConcept C54355233 @default.
- W3080211037 hasConcept C70721500 @default.
- W3080211037 hasConcept C86803240 @default.
- W3080211037 hasConceptScore W3080211037C104317684 @default.
- W3080211037 hasConceptScore W3080211037C105580179 @default.
- W3080211037 hasConceptScore W3080211037C150194340 @default.
- W3080211037 hasConceptScore W3080211037C54355233 @default.
- W3080211037 hasConceptScore W3080211037C70721500 @default.
- W3080211037 hasConceptScore W3080211037C86803240 @default.
- W3080211037 hasFunder F4320321001 @default.
- W3080211037 hasFunder F4320334704 @default.
- W3080211037 hasFunder F4320334705 @default.
- W3080211037 hasFunder F4320335787 @default.
- W3080211037 hasLocation W30802110371 @default.
- W3080211037 hasLocation W30802110372 @default.
- W3080211037 hasLocation W30802110373 @default.
- W3080211037 hasLocation W30802110374 @default.
- W3080211037 hasLocation W30802110375 @default.
- W3080211037 hasOpenAccess W3080211037 @default.
- W3080211037 hasPrimaryLocation W30802110371 @default.
- W3080211037 hasRelatedWork W1990804418 @default.
- W3080211037 hasRelatedWork W1993764875 @default.
- W3080211037 hasRelatedWork W2005057264 @default.
- W3080211037 hasRelatedWork W2082860237 @default.
- W3080211037 hasRelatedWork W2130076355 @default.
- W3080211037 hasRelatedWork W2362348557 @default.
- W3080211037 hasRelatedWork W2363156284 @default.
- W3080211037 hasRelatedWork W2415025170 @default.
- W3080211037 hasRelatedWork W2803323662 @default.