Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080221957> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3080221957 abstract "This review a highlights that to use artificial intelligence (AI) tools effectively for hypertension research, a new foundation to further understand the biology of hypertension needs to occur by leveraging genome and RNA sequencing technology and derived tools on a broad scale in hypertension. For the last few years, progress in research and management of essential hypertension has been stagnating while at the same time, the sequencing of the human genome has been generating many new research tools and opportunities to investigate the biology of hypertension. Cancer research has applied modern tools derived from DNA and RNA sequencing on a large scale, enabling the improved understanding of cancer biology and leading to many clinical applications. Compared with cancer, studies in hypertension, using whole genome, exome, or RNA sequencing tools, total less than 2% of the number cancer studies. While true, sequencing the genome of cancer tissue has provided cancer research an advantage, DNA and RNA sequencing derived tools can also be used in hypertension to generate new understanding how complex protein network, in non-cancer tissue, adapts and learns to be effective when for example, somatic mutations or environmental inputs change the gene expression profiles at different network nodes. The amount of data and differences in clinical condition classification at the individual sample level might be of such magnitude to overwhelm and stretch comprehension. Here is the opportunity to use AI tools for the analysis of data streams derived from DNA and RNA sequencing tools combined with clinical data to generate new hypotheses leading to the discovery of mechanisms and potential target molecules from which drugs or treatments can be developed and tested. Basic and clinical research taking advantage of new gene sequencing-based tools, to uncover mechanisms how complex protein networks regulate blood pressure in health and disease, will be critical to lift hypertension research and management from its stagnation. The use of AI analytic tools will help leverage such insights. However, applying AI tools to vast amounts of data that certainly exist in hypertension, without taking advantage of new gene sequencing-based research tools, will generate questionable results and will miss many new potential molecular targets and possibly treatments. Without such approaches, the vision of precision medicine for hypertension will be hard to accomplish and most likely not occur in the near future." @default.
- W3080221957 created "2020-09-01" @default.
- W3080221957 creator A5012686761 @default.
- W3080221957 date "2020-08-27" @default.
- W3080221957 modified "2023-10-10" @default.
- W3080221957 title "AI (Artificial Intelligence) and Hypertension Research" @default.
- W3080221957 cites W1992412494 @default.
- W3080221957 cites W1998399571 @default.
- W3080221957 cites W2000040025 @default.
- W3080221957 cites W2030994461 @default.
- W3080221957 cites W2097113581 @default.
- W3080221957 cites W2110256992 @default.
- W3080221957 cites W2121815042 @default.
- W3080221957 cites W2126466006 @default.
- W3080221957 cites W2126826962 @default.
- W3080221957 cites W2161399617 @default.
- W3080221957 cites W2561981131 @default.
- W3080221957 cites W2606592619 @default.
- W3080221957 cites W2802670236 @default.
- W3080221957 cites W2900901504 @default.
- W3080221957 cites W2954757312 @default.
- W3080221957 cites W2968235599 @default.
- W3080221957 cites W2990010818 @default.
- W3080221957 cites W3013946245 @default.
- W3080221957 doi "https://doi.org/10.1007/s11906-020-01068-8" @default.
- W3080221957 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7450041" @default.
- W3080221957 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32852654" @default.
- W3080221957 hasPublicationYear "2020" @default.
- W3080221957 type Work @default.
- W3080221957 sameAs 3080221957 @default.
- W3080221957 citedByCount "8" @default.
- W3080221957 countsByYear W30802219572021 @default.
- W3080221957 countsByYear W30802219572022 @default.
- W3080221957 crossrefType "journal-article" @default.
- W3080221957 hasAuthorship W3080221957A5012686761 @default.
- W3080221957 hasBestOaLocation W30802219571 @default.
- W3080221957 hasConcept C104317684 @default.
- W3080221957 hasConcept C10590036 @default.
- W3080221957 hasConcept C141231307 @default.
- W3080221957 hasConcept C16671776 @default.
- W3080221957 hasConcept C197077220 @default.
- W3080221957 hasConcept C24432333 @default.
- W3080221957 hasConcept C501734568 @default.
- W3080221957 hasConcept C51679486 @default.
- W3080221957 hasConcept C54355233 @default.
- W3080221957 hasConcept C60644358 @default.
- W3080221957 hasConcept C70721500 @default.
- W3080221957 hasConcept C71924100 @default.
- W3080221957 hasConcept C86803240 @default.
- W3080221957 hasConceptScore W3080221957C104317684 @default.
- W3080221957 hasConceptScore W3080221957C10590036 @default.
- W3080221957 hasConceptScore W3080221957C141231307 @default.
- W3080221957 hasConceptScore W3080221957C16671776 @default.
- W3080221957 hasConceptScore W3080221957C197077220 @default.
- W3080221957 hasConceptScore W3080221957C24432333 @default.
- W3080221957 hasConceptScore W3080221957C501734568 @default.
- W3080221957 hasConceptScore W3080221957C51679486 @default.
- W3080221957 hasConceptScore W3080221957C54355233 @default.
- W3080221957 hasConceptScore W3080221957C60644358 @default.
- W3080221957 hasConceptScore W3080221957C70721500 @default.
- W3080221957 hasConceptScore W3080221957C71924100 @default.
- W3080221957 hasConceptScore W3080221957C86803240 @default.
- W3080221957 hasIssue "9" @default.
- W3080221957 hasLocation W30802219571 @default.
- W3080221957 hasLocation W30802219572 @default.
- W3080221957 hasOpenAccess W3080221957 @default.
- W3080221957 hasPrimaryLocation W30802219571 @default.
- W3080221957 hasRelatedWork W1576119957 @default.
- W3080221957 hasRelatedWork W1965856472 @default.
- W3080221957 hasRelatedWork W2055298451 @default.
- W3080221957 hasRelatedWork W2075780501 @default.
- W3080221957 hasRelatedWork W2085873939 @default.
- W3080221957 hasRelatedWork W2104595023 @default.
- W3080221957 hasRelatedWork W2118194624 @default.
- W3080221957 hasRelatedWork W2143602768 @default.
- W3080221957 hasRelatedWork W2610790664 @default.
- W3080221957 hasRelatedWork W2734477485 @default.
- W3080221957 hasVolume "22" @default.
- W3080221957 isParatext "false" @default.
- W3080221957 isRetracted "false" @default.
- W3080221957 magId "3080221957" @default.
- W3080221957 workType "article" @default.