Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080247448> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3080247448 abstract "The application of compressive sensing (CS) techniques for the hyperspectral (HS) imaging is very appealing since the acquisition of HS images is demanding in terms hardware and acquisition time, and since the application of CS framework matches well the HS imaging task, which involves capturing huge amount of typically very redundant data. During the last decade, we developed several CS HS imaging systems, which have demonstrated orders of magnitude reduction of the acquisition time and of storage requirements, improved signal-to-noise ratio, and reduction of the systems’ size and weight. In this paper we demonstrate how these systems can further benefit from employing deep learning (DL) tools for post-processing of the compressively sensed hyperspectral data. We overview some DL techniques that we have developed for improving the HS image reconstruction and target detection." @default.
- W3080247448 created "2020-09-01" @default.
- W3080247448 creator A5004500738 @default.
- W3080247448 creator A5052244163 @default.
- W3080247448 creator A5060414926 @default.
- W3080247448 creator A5076732046 @default.
- W3080247448 creator A5079424012 @default.
- W3080247448 creator A5083899563 @default.
- W3080247448 date "2020-08-20" @default.
- W3080247448 modified "2023-09-24" @default.
- W3080247448 title "Deep learning for compressive hyperspectral sensing" @default.
- W3080247448 doi "https://doi.org/10.1117/12.2568596" @default.
- W3080247448 hasPublicationYear "2020" @default.
- W3080247448 type Work @default.
- W3080247448 sameAs 3080247448 @default.
- W3080247448 citedByCount "0" @default.
- W3080247448 crossrefType "proceedings-article" @default.
- W3080247448 hasAuthorship W3080247448A5004500738 @default.
- W3080247448 hasAuthorship W3080247448A5052244163 @default.
- W3080247448 hasAuthorship W3080247448A5060414926 @default.
- W3080247448 hasAuthorship W3080247448A5076732046 @default.
- W3080247448 hasAuthorship W3080247448A5079424012 @default.
- W3080247448 hasAuthorship W3080247448A5083899563 @default.
- W3080247448 hasConcept C108583219 @default.
- W3080247448 hasConcept C111335779 @default.
- W3080247448 hasConcept C111919701 @default.
- W3080247448 hasConcept C115961682 @default.
- W3080247448 hasConcept C124851039 @default.
- W3080247448 hasConcept C127313418 @default.
- W3080247448 hasConcept C13944312 @default.
- W3080247448 hasConcept C141379421 @default.
- W3080247448 hasConcept C153180895 @default.
- W3080247448 hasConcept C154945302 @default.
- W3080247448 hasConcept C159078339 @default.
- W3080247448 hasConcept C163294075 @default.
- W3080247448 hasConcept C163985040 @default.
- W3080247448 hasConcept C2524010 @default.
- W3080247448 hasConcept C31972630 @default.
- W3080247448 hasConcept C33923547 @default.
- W3080247448 hasConcept C41008148 @default.
- W3080247448 hasConcept C62649853 @default.
- W3080247448 hasConcept C76155785 @default.
- W3080247448 hasConcept C99498987 @default.
- W3080247448 hasConceptScore W3080247448C108583219 @default.
- W3080247448 hasConceptScore W3080247448C111335779 @default.
- W3080247448 hasConceptScore W3080247448C111919701 @default.
- W3080247448 hasConceptScore W3080247448C115961682 @default.
- W3080247448 hasConceptScore W3080247448C124851039 @default.
- W3080247448 hasConceptScore W3080247448C127313418 @default.
- W3080247448 hasConceptScore W3080247448C13944312 @default.
- W3080247448 hasConceptScore W3080247448C141379421 @default.
- W3080247448 hasConceptScore W3080247448C153180895 @default.
- W3080247448 hasConceptScore W3080247448C154945302 @default.
- W3080247448 hasConceptScore W3080247448C159078339 @default.
- W3080247448 hasConceptScore W3080247448C163294075 @default.
- W3080247448 hasConceptScore W3080247448C163985040 @default.
- W3080247448 hasConceptScore W3080247448C2524010 @default.
- W3080247448 hasConceptScore W3080247448C31972630 @default.
- W3080247448 hasConceptScore W3080247448C33923547 @default.
- W3080247448 hasConceptScore W3080247448C41008148 @default.
- W3080247448 hasConceptScore W3080247448C62649853 @default.
- W3080247448 hasConceptScore W3080247448C76155785 @default.
- W3080247448 hasConceptScore W3080247448C99498987 @default.
- W3080247448 hasLocation W30802474481 @default.
- W3080247448 hasOpenAccess W3080247448 @default.
- W3080247448 hasPrimaryLocation W30802474481 @default.
- W3080247448 hasRelatedWork W11499724 @default.
- W3080247448 hasRelatedWork W1214702 @default.
- W3080247448 hasRelatedWork W12235189 @default.
- W3080247448 hasRelatedWork W12239746 @default.
- W3080247448 hasRelatedWork W1693066 @default.
- W3080247448 hasRelatedWork W5479987 @default.
- W3080247448 hasRelatedWork W6468916 @default.
- W3080247448 hasRelatedWork W7537351 @default.
- W3080247448 hasRelatedWork W7564530 @default.
- W3080247448 hasRelatedWork W5603416 @default.
- W3080247448 isParatext "false" @default.
- W3080247448 isRetracted "false" @default.
- W3080247448 magId "3080247448" @default.
- W3080247448 workType "article" @default.