Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080286195> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3080286195 abstract "The biggest obstacle of automated software testing is the construction of test oracles. Today, it is possible to generate enormous amount of test cases for an arbitrary system that reach a remarkably high level of coverage, but the effectiveness of test cases is limited by the availability of test oracles that can distinguish failing executions. Previous work by the authors has explored the use of unsupervised and semi-supervised learning techniques to develop test oracles so that the correctness of software outputs and behaviours on new test cases can be predicated [1], [2], [10], and experimental results demonstrate the promise of this approach. In this paper, we present an evaluation study for test oracles based on machine-learning approaches via dynamic execution data (firstly, input/output pairs and secondly, amalgamations of input/output pairs and execution traces) by comparing their effectiveness with existing techniques from the specification mining domain (the data invariant detector Daikon [5]). The two approaches are evaluated on a range of mid-sized systems and compared in terms of their fault detection ability and false positive rate. The empirical study also discuss the major limitations and the most important properties related to the application of machine learning techniques as test oracles in practice. The study also gives a road map for further research direction in order to tackle some of discussed limitations such as accuracy and scalability. The results show that in most cases semi-supervised learning techniques performed far better as an automated test classifier than Daikon (especially in the case that input/output pairs were augmented with their execution traces). However, there is one system for which our strategy struggles and Daikon performed far better. Furthermore, unsupervised learning techniques performed on a par when compared with Daikon in several cases particularly when input/output pairs were used together with execution traces." @default.
- W3080286195 created "2020-09-01" @default.
- W3080286195 creator A5033390050 @default.
- W3080286195 creator A5046535825 @default.
- W3080286195 creator A5077078698 @default.
- W3080286195 date "2020-09-14" @default.
- W3080286195 modified "2023-10-14" @default.
- W3080286195 title "Machine Learning Techniques for Automated Software Fault Detection via Dynamic Execution Data" @default.
- W3080286195 cites W1971650562 @default.
- W3080286195 cites W2014886770 @default.
- W3080286195 cites W2110908283 @default.
- W3080286195 cites W2122646361 @default.
- W3080286195 cites W2529805005 @default.
- W3080286195 cites W2560520299 @default.
- W3080286195 cites W2946253588 @default.
- W3080286195 doi "https://doi.org/10.1145/3410352.3410747" @default.
- W3080286195 hasPublicationYear "2020" @default.
- W3080286195 type Work @default.
- W3080286195 sameAs 3080286195 @default.
- W3080286195 citedByCount "0" @default.
- W3080286195 crossrefType "proceedings-article" @default.
- W3080286195 hasAuthorship W3080286195A5033390050 @default.
- W3080286195 hasAuthorship W3080286195A5046535825 @default.
- W3080286195 hasAuthorship W3080286195A5077078698 @default.
- W3080286195 hasBestOaLocation W30802861952 @default.
- W3080286195 hasConcept C119857082 @default.
- W3080286195 hasConcept C124101348 @default.
- W3080286195 hasConcept C128942645 @default.
- W3080286195 hasConcept C152745839 @default.
- W3080286195 hasConcept C152877465 @default.
- W3080286195 hasConcept C154945302 @default.
- W3080286195 hasConcept C16910744 @default.
- W3080286195 hasConcept C172707124 @default.
- W3080286195 hasConcept C199360897 @default.
- W3080286195 hasConcept C2777904410 @default.
- W3080286195 hasConcept C41008148 @default.
- W3080286195 hasConcept C48044578 @default.
- W3080286195 hasConcept C55439883 @default.
- W3080286195 hasConcept C77088390 @default.
- W3080286195 hasConcept C95623464 @default.
- W3080286195 hasConceptScore W3080286195C119857082 @default.
- W3080286195 hasConceptScore W3080286195C124101348 @default.
- W3080286195 hasConceptScore W3080286195C128942645 @default.
- W3080286195 hasConceptScore W3080286195C152745839 @default.
- W3080286195 hasConceptScore W3080286195C152877465 @default.
- W3080286195 hasConceptScore W3080286195C154945302 @default.
- W3080286195 hasConceptScore W3080286195C16910744 @default.
- W3080286195 hasConceptScore W3080286195C172707124 @default.
- W3080286195 hasConceptScore W3080286195C199360897 @default.
- W3080286195 hasConceptScore W3080286195C2777904410 @default.
- W3080286195 hasConceptScore W3080286195C41008148 @default.
- W3080286195 hasConceptScore W3080286195C48044578 @default.
- W3080286195 hasConceptScore W3080286195C55439883 @default.
- W3080286195 hasConceptScore W3080286195C77088390 @default.
- W3080286195 hasConceptScore W3080286195C95623464 @default.
- W3080286195 hasLocation W30802861951 @default.
- W3080286195 hasLocation W30802861952 @default.
- W3080286195 hasOpenAccess W3080286195 @default.
- W3080286195 hasPrimaryLocation W30802861951 @default.
- W3080286195 hasRelatedWork W1498391134 @default.
- W3080286195 hasRelatedWork W1998305460 @default.
- W3080286195 hasRelatedWork W2057951681 @default.
- W3080286195 hasRelatedWork W2524393364 @default.
- W3080286195 hasRelatedWork W2556319748 @default.
- W3080286195 hasRelatedWork W2767681984 @default.
- W3080286195 hasRelatedWork W2891961174 @default.
- W3080286195 hasRelatedWork W2961085424 @default.
- W3080286195 hasRelatedWork W3200179079 @default.
- W3080286195 hasRelatedWork W4249229055 @default.
- W3080286195 isParatext "false" @default.
- W3080286195 isRetracted "false" @default.
- W3080286195 magId "3080286195" @default.
- W3080286195 workType "article" @default.