Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080301222> ?p ?o ?g. }
- W3080301222 endingPage "4411" @default.
- W3080301222 startingPage "4400" @default.
- W3080301222 abstract "Facial features were associated with increased risk of coronary artery disease (CAD). We developed and validated a deep learning algorithm for detecting CAD based on facial photos.We conducted a multicentre cross-sectional study of patients undergoing coronary angiography or computed tomography angiography at nine Chinese sites to train and validate a deep convolutional neural network for the detection of CAD (at least one ≥50% stenosis) from patient facial photos. Between July 2017 and March 2019, 5796 patients from eight sites were consecutively enrolled and randomly divided into training (90%, n = 5216) and validation (10%, n = 580) groups for algorithm development. Between April 2019 and July 2019, 1013 patients from nine sites were enrolled in test group for algorithm test. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated using radiologist diagnosis as the reference standard. Using an operating cut point with high sensitivity, the CAD detection algorithm had sensitivity of 0.80 and specificity of 0.54 in the test group; the AUC was 0.730 (95% confidence interval, 0.699-0.761). The AUC for the algorithm was higher than that for the Diamond-Forrester model (0.730 vs. 0.623, P < 0.001) and the CAD consortium clinical score (0.730 vs. 0.652, P < 0.001).Our results suggested that a deep learning algorithm based on facial photos can assist in CAD detection in this Chinese cohort. This technique may hold promise for pre-test CAD probability assessment in outpatient clinics or CAD screening in community. Further studies to develop a clinical available tool are warranted." @default.
- W3080301222 created "2020-09-01" @default.
- W3080301222 creator A5000149877 @default.
- W3080301222 creator A5003733739 @default.
- W3080301222 creator A5007767899 @default.
- W3080301222 creator A5011405813 @default.
- W3080301222 creator A5015631290 @default.
- W3080301222 creator A5020613063 @default.
- W3080301222 creator A5024401174 @default.
- W3080301222 creator A5024729608 @default.
- W3080301222 creator A5026984704 @default.
- W3080301222 creator A5029115319 @default.
- W3080301222 creator A5031639923 @default.
- W3080301222 creator A5040465674 @default.
- W3080301222 creator A5056078581 @default.
- W3080301222 creator A5062578224 @default.
- W3080301222 creator A5075782732 @default.
- W3080301222 creator A5077399002 @default.
- W3080301222 creator A5080113677 @default.
- W3080301222 creator A5080831295 @default.
- W3080301222 creator A5089458516 @default.
- W3080301222 date "2020-08-20" @default.
- W3080301222 modified "2023-10-16" @default.
- W3080301222 title "Feasibility of using deep learning to detect coronary artery disease based on facial photo" @default.
- W3080301222 cites W1992318630 @default.
- W3080301222 cites W1992580301 @default.
- W3080301222 cites W2013362167 @default.
- W3080301222 cites W2022961959 @default.
- W3080301222 cites W2117893211 @default.
- W3080301222 cites W2123036928 @default.
- W3080301222 cites W2124454279 @default.
- W3080301222 cites W2126900802 @default.
- W3080301222 cites W2129322018 @default.
- W3080301222 cites W2132259559 @default.
- W3080301222 cites W2135195411 @default.
- W3080301222 cites W2136738328 @default.
- W3080301222 cites W2143871529 @default.
- W3080301222 cites W2165884492 @default.
- W3080301222 cites W2198986894 @default.
- W3080301222 cites W2255311291 @default.
- W3080301222 cites W2258378074 @default.
- W3080301222 cites W2334748255 @default.
- W3080301222 cites W2473077508 @default.
- W3080301222 cites W2589094117 @default.
- W3080301222 cites W2614578122 @default.
- W3080301222 cites W2766272388 @default.
- W3080301222 cites W2903987937 @default.
- W3080301222 cites W2905441841 @default.
- W3080301222 doi "https://doi.org/10.1093/eurheartj/ehaa640" @default.
- W3080301222 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32818267" @default.
- W3080301222 hasPublicationYear "2020" @default.
- W3080301222 type Work @default.
- W3080301222 sameAs 3080301222 @default.
- W3080301222 citedByCount "58" @default.
- W3080301222 countsByYear W30803012222020 @default.
- W3080301222 countsByYear W30803012222021 @default.
- W3080301222 countsByYear W30803012222022 @default.
- W3080301222 countsByYear W30803012222023 @default.
- W3080301222 crossrefType "journal-article" @default.
- W3080301222 hasAuthorship W3080301222A5000149877 @default.
- W3080301222 hasAuthorship W3080301222A5003733739 @default.
- W3080301222 hasAuthorship W3080301222A5007767899 @default.
- W3080301222 hasAuthorship W3080301222A5011405813 @default.
- W3080301222 hasAuthorship W3080301222A5015631290 @default.
- W3080301222 hasAuthorship W3080301222A5020613063 @default.
- W3080301222 hasAuthorship W3080301222A5024401174 @default.
- W3080301222 hasAuthorship W3080301222A5024729608 @default.
- W3080301222 hasAuthorship W3080301222A5026984704 @default.
- W3080301222 hasAuthorship W3080301222A5029115319 @default.
- W3080301222 hasAuthorship W3080301222A5031639923 @default.
- W3080301222 hasAuthorship W3080301222A5040465674 @default.
- W3080301222 hasAuthorship W3080301222A5056078581 @default.
- W3080301222 hasAuthorship W3080301222A5062578224 @default.
- W3080301222 hasAuthorship W3080301222A5075782732 @default.
- W3080301222 hasAuthorship W3080301222A5077399002 @default.
- W3080301222 hasAuthorship W3080301222A5080113677 @default.
- W3080301222 hasAuthorship W3080301222A5080831295 @default.
- W3080301222 hasAuthorship W3080301222A5089458516 @default.
- W3080301222 hasBestOaLocation W30803012221 @default.
- W3080301222 hasConcept C11413529 @default.
- W3080301222 hasConcept C126322002 @default.
- W3080301222 hasConcept C126838900 @default.
- W3080301222 hasConcept C127413603 @default.
- W3080301222 hasConcept C154945302 @default.
- W3080301222 hasConcept C164705383 @default.
- W3080301222 hasConcept C194789388 @default.
- W3080301222 hasConcept C199639397 @default.
- W3080301222 hasConcept C2778213512 @default.
- W3080301222 hasConcept C41008148 @default.
- W3080301222 hasConcept C44249647 @default.
- W3080301222 hasConcept C58471807 @default.
- W3080301222 hasConcept C71924100 @default.
- W3080301222 hasConcept C76318530 @default.
- W3080301222 hasConceptScore W3080301222C11413529 @default.
- W3080301222 hasConceptScore W3080301222C126322002 @default.
- W3080301222 hasConceptScore W3080301222C126838900 @default.
- W3080301222 hasConceptScore W3080301222C127413603 @default.
- W3080301222 hasConceptScore W3080301222C154945302 @default.