Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080302512> ?p ?o ?g. }
- W3080302512 endingPage "1538.e6" @default.
- W3080302512 startingPage "1533" @default.
- W3080302512 abstract "ObjectiveInform coronavirus disease 2019 (COVID-19) infection prevention measures by identifying and assessing risk and possible vectors of infection in nursing homes (NHs) using a machine-learning approach.DesignThis retrospective cohort study used a gradient boosting algorithm to evaluate risk of COVID-19 infection (ie, presence of at least 1 confirmed COVID-19 resident) in NHs.Setting and ParticipantsThe model was trained on outcomes from 1146 NHs in Massachusetts, Georgia, and New Jersey, reporting COVID-19 case data on April 20, 2020. Risk indices generated from the model using data from May 4 were prospectively validated against outcomes reported on May 11 from 1021 NHs in California.MethodsModel features, pertaining to facility and community characteristics, were obtained from a self-constructed dataset based on multiple public and private sources. The model was assessed via out-of-sample area under the receiver operating characteristic curve (AUC), sensitivity, and specificity in the training (via 10-fold cross-validation) and validation datasets.ResultsThe mean AUC, sensitivity, and specificity of the model over 10-fold cross-validation were 0.729 [95% confidence interval (CI) 0.690‒0.767], 0.670 (95% CI 0.477‒0.862), and 0.611 (95% CI 0.412‒0.809), respectively. Prospective out-of-sample validation yielded similar performance measures (AUC 0.721; sensitivity 0.622; specificity 0.713). The strongest predictors of COVID-19 infection were identified as the NH's county's infection rate and the number of separate units in the NH; other predictors included the county's population density, historical Centers of Medicare and Medicaid Services cited health deficiencies, and the NH's resident density (in persons per 1000 square feet). In addition, the NH's historical percentage of non-Hispanic white residents was identified as a protective factor.Conclusions and ImplicationsA machine-learning model can help quantify and predict NH infection risk. The identified risk factors support the early identification and management of presymptomatic and asymptomatic individuals (eg, staff) entering the NH from the surrounding community and the development of financially sustainable staff testing initiatives in preventing COVID-19 infection." @default.
- W3080302512 created "2020-09-01" @default.
- W3080302512 creator A5010132183 @default.
- W3080302512 creator A5028843482 @default.
- W3080302512 creator A5032712683 @default.
- W3080302512 creator A5033905504 @default.
- W3080302512 creator A5038300217 @default.
- W3080302512 creator A5043896927 @default.
- W3080302512 creator A5052410341 @default.
- W3080302512 creator A5077116876 @default.
- W3080302512 date "2020-11-01" @default.
- W3080302512 modified "2023-10-16" @default.
- W3080302512 title "Predicting Coronavirus Disease 2019 Infection Risk and Related Risk Drivers in Nursing Homes: A Machine Learning Approach" @default.
- W3080302512 cites W2037112556 @default.
- W3080302512 cites W2170620443 @default.
- W3080302512 cites W2191447984 @default.
- W3080302512 cites W2287349701 @default.
- W3080302512 cites W2413312411 @default.
- W3080302512 cites W2897939932 @default.
- W3080302512 cites W2955298330 @default.
- W3080302512 cites W3013233995 @default.
- W3080302512 cites W3013674564 @default.
- W3080302512 cites W3015807396 @default.
- W3080302512 cites W3017450171 @default.
- W3080302512 cites W3017452948 @default.
- W3080302512 cites W3018019378 @default.
- W3080302512 cites W3019171825 @default.
- W3080302512 cites W3019209377 @default.
- W3080302512 cites W3019291397 @default.
- W3080302512 cites W3022745450 @default.
- W3080302512 cites W3023031160 @default.
- W3080302512 cites W3028038140 @default.
- W3080302512 cites W3028919494 @default.
- W3080302512 cites W3030701243 @default.
- W3080302512 cites W3031713996 @default.
- W3080302512 cites W3033603382 @default.
- W3080302512 cites W3034384631 @default.
- W3080302512 cites W3034747073 @default.
- W3080302512 cites W3036272784 @default.
- W3080302512 cites W3039187367 @default.
- W3080302512 doi "https://doi.org/10.1016/j.jamda.2020.08.030" @default.
- W3080302512 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7451194" @default.
- W3080302512 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33032935" @default.
- W3080302512 hasPublicationYear "2020" @default.
- W3080302512 type Work @default.
- W3080302512 sameAs 3080302512 @default.
- W3080302512 citedByCount "30" @default.
- W3080302512 countsByYear W30803025122021 @default.
- W3080302512 countsByYear W30803025122022 @default.
- W3080302512 countsByYear W30803025122023 @default.
- W3080302512 crossrefType "journal-article" @default.
- W3080302512 hasAuthorship W3080302512A5010132183 @default.
- W3080302512 hasAuthorship W3080302512A5028843482 @default.
- W3080302512 hasAuthorship W3080302512A5032712683 @default.
- W3080302512 hasAuthorship W3080302512A5033905504 @default.
- W3080302512 hasAuthorship W3080302512A5038300217 @default.
- W3080302512 hasAuthorship W3080302512A5043896927 @default.
- W3080302512 hasAuthorship W3080302512A5052410341 @default.
- W3080302512 hasAuthorship W3080302512A5077116876 @default.
- W3080302512 hasBestOaLocation W30803025121 @default.
- W3080302512 hasConcept C119857082 @default.
- W3080302512 hasConcept C12174686 @default.
- W3080302512 hasConcept C126322002 @default.
- W3080302512 hasConcept C167135981 @default.
- W3080302512 hasConcept C188816634 @default.
- W3080302512 hasConcept C194828623 @default.
- W3080302512 hasConcept C201903717 @default.
- W3080302512 hasConcept C2779134260 @default.
- W3080302512 hasConcept C2908647359 @default.
- W3080302512 hasConcept C3008058167 @default.
- W3080302512 hasConcept C38652104 @default.
- W3080302512 hasConcept C41008148 @default.
- W3080302512 hasConcept C44249647 @default.
- W3080302512 hasConcept C524204448 @default.
- W3080302512 hasConcept C58471807 @default.
- W3080302512 hasConcept C71924100 @default.
- W3080302512 hasConcept C72563966 @default.
- W3080302512 hasConcept C76318530 @default.
- W3080302512 hasConcept C99454951 @default.
- W3080302512 hasConceptScore W3080302512C119857082 @default.
- W3080302512 hasConceptScore W3080302512C12174686 @default.
- W3080302512 hasConceptScore W3080302512C126322002 @default.
- W3080302512 hasConceptScore W3080302512C167135981 @default.
- W3080302512 hasConceptScore W3080302512C188816634 @default.
- W3080302512 hasConceptScore W3080302512C194828623 @default.
- W3080302512 hasConceptScore W3080302512C201903717 @default.
- W3080302512 hasConceptScore W3080302512C2779134260 @default.
- W3080302512 hasConceptScore W3080302512C2908647359 @default.
- W3080302512 hasConceptScore W3080302512C3008058167 @default.
- W3080302512 hasConceptScore W3080302512C38652104 @default.
- W3080302512 hasConceptScore W3080302512C41008148 @default.
- W3080302512 hasConceptScore W3080302512C44249647 @default.
- W3080302512 hasConceptScore W3080302512C524204448 @default.
- W3080302512 hasConceptScore W3080302512C58471807 @default.
- W3080302512 hasConceptScore W3080302512C71924100 @default.
- W3080302512 hasConceptScore W3080302512C72563966 @default.
- W3080302512 hasConceptScore W3080302512C76318530 @default.
- W3080302512 hasConceptScore W3080302512C99454951 @default.