Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080322419> ?p ?o ?g. }
- W3080322419 abstract "Polarimetric Synthetic Aperture Radar (PolSAR) image classification aims at classifying resolution cells into homogeneous groups according to physical property. Deep learning is developing rapidly in the recent years and has been utilized in PolSAR classification. However, the utilization of the deep features is still limited, inadequate use of which makes convolutional neural networks (CNNs) suffer from over-fitting problem in small training dataset and produce unsatisfactory results. In this paper, a novel classification algorithm is proposed based on an Adaptive boost (Adaboost) deep learning method. The ensemble learning schedule is introduced to CNN, which enhances the robustness and adaptability of the deep mode. Besides, the novel model has less parameters, thereby equipping with better performance compared with the CNNs. The experimental results on real PolSAR dataset verify the effectiveness and the superiority of the proposed method, and demonstrate that it can provide stronger noise immunity and obtain smoother homogeneous areas in classification." @default.
- W3080322419 created "2020-09-01" @default.
- W3080322419 creator A5010555402 @default.
- W3080322419 creator A5010639562 @default.
- W3080322419 creator A5021384155 @default.
- W3080322419 creator A5026265793 @default.
- W3080322419 creator A5029360035 @default.
- W3080322419 creator A5040903965 @default.
- W3080322419 date "2019-12-01" @default.
- W3080322419 modified "2023-09-27" @default.
- W3080322419 title "PolSAR Image Classifiacation Based on Deep CNN and Adaboost" @default.
- W3080322419 cites W1421632428 @default.
- W3080322419 cites W1618905105 @default.
- W3080322419 cites W1665214252 @default.
- W3080322419 cites W1677182931 @default.
- W3080322419 cites W1686810756 @default.
- W3080322419 cites W1903029394 @default.
- W3080322419 cites W1968969471 @default.
- W3080322419 cites W1988790447 @default.
- W3080322419 cites W2008826820 @default.
- W3080322419 cites W2052190325 @default.
- W3080322419 cites W2078985447 @default.
- W3080322419 cites W2094562516 @default.
- W3080322419 cites W2097117768 @default.
- W3080322419 cites W2100024934 @default.
- W3080322419 cites W2112796928 @default.
- W3080322419 cites W2117327511 @default.
- W3080322419 cites W2132012856 @default.
- W3080322419 cites W2138487889 @default.
- W3080322419 cites W2143353454 @default.
- W3080322419 cites W2153635508 @default.
- W3080322419 cites W2163605009 @default.
- W3080322419 cites W2165571665 @default.
- W3080322419 cites W2194775991 @default.
- W3080322419 cites W2248623186 @default.
- W3080322419 cites W2559324447 @default.
- W3080322419 cites W2613718673 @default.
- W3080322419 cites W2625947046 @default.
- W3080322419 cites W2754361766 @default.
- W3080322419 cites W2767003110 @default.
- W3080322419 doi "https://doi.org/10.1109/icsidp47821.2019.9173479" @default.
- W3080322419 hasPublicationYear "2019" @default.
- W3080322419 type Work @default.
- W3080322419 sameAs 3080322419 @default.
- W3080322419 citedByCount "0" @default.
- W3080322419 crossrefType "proceedings-article" @default.
- W3080322419 hasAuthorship W3080322419A5010555402 @default.
- W3080322419 hasAuthorship W3080322419A5010639562 @default.
- W3080322419 hasAuthorship W3080322419A5021384155 @default.
- W3080322419 hasAuthorship W3080322419A5026265793 @default.
- W3080322419 hasAuthorship W3080322419A5029360035 @default.
- W3080322419 hasAuthorship W3080322419A5040903965 @default.
- W3080322419 hasConcept C104317684 @default.
- W3080322419 hasConcept C108583219 @default.
- W3080322419 hasConcept C115961682 @default.
- W3080322419 hasConcept C119857082 @default.
- W3080322419 hasConcept C12267149 @default.
- W3080322419 hasConcept C141404830 @default.
- W3080322419 hasConcept C153180895 @default.
- W3080322419 hasConcept C154945302 @default.
- W3080322419 hasConcept C177606310 @default.
- W3080322419 hasConcept C185592680 @default.
- W3080322419 hasConcept C18903297 @default.
- W3080322419 hasConcept C41008148 @default.
- W3080322419 hasConcept C46686674 @default.
- W3080322419 hasConcept C55493867 @default.
- W3080322419 hasConcept C63479239 @default.
- W3080322419 hasConcept C75294576 @default.
- W3080322419 hasConcept C81363708 @default.
- W3080322419 hasConcept C86803240 @default.
- W3080322419 hasConcept C87360688 @default.
- W3080322419 hasConceptScore W3080322419C104317684 @default.
- W3080322419 hasConceptScore W3080322419C108583219 @default.
- W3080322419 hasConceptScore W3080322419C115961682 @default.
- W3080322419 hasConceptScore W3080322419C119857082 @default.
- W3080322419 hasConceptScore W3080322419C12267149 @default.
- W3080322419 hasConceptScore W3080322419C141404830 @default.
- W3080322419 hasConceptScore W3080322419C153180895 @default.
- W3080322419 hasConceptScore W3080322419C154945302 @default.
- W3080322419 hasConceptScore W3080322419C177606310 @default.
- W3080322419 hasConceptScore W3080322419C185592680 @default.
- W3080322419 hasConceptScore W3080322419C18903297 @default.
- W3080322419 hasConceptScore W3080322419C41008148 @default.
- W3080322419 hasConceptScore W3080322419C46686674 @default.
- W3080322419 hasConceptScore W3080322419C55493867 @default.
- W3080322419 hasConceptScore W3080322419C63479239 @default.
- W3080322419 hasConceptScore W3080322419C75294576 @default.
- W3080322419 hasConceptScore W3080322419C81363708 @default.
- W3080322419 hasConceptScore W3080322419C86803240 @default.
- W3080322419 hasConceptScore W3080322419C87360688 @default.
- W3080322419 hasLocation W30803224191 @default.
- W3080322419 hasOpenAccess W3080322419 @default.
- W3080322419 hasPrimaryLocation W30803224191 @default.
- W3080322419 hasRelatedWork W10697079 @default.
- W3080322419 hasRelatedWork W11339170 @default.
- W3080322419 hasRelatedWork W12793662 @default.
- W3080322419 hasRelatedWork W1368183 @default.
- W3080322419 hasRelatedWork W1997323 @default.
- W3080322419 hasRelatedWork W5006466 @default.
- W3080322419 hasRelatedWork W5743998 @default.