Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080329174> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3080329174 endingPage "102749" @default.
- W3080329174 startingPage "102749" @default.
- W3080329174 abstract "Rail transit delays are generally discussed in terms of on-time performance or problems at individual stops. Such stop-scale approaches ignore the fact that delays are also caused and perpetuated by network-wide factors (e.g., bottlenecks caused by shared tracks by multiple transit lines). The objective of this paper is to develop a network model and metrics that can quantify the delay dependencies between transit network stops, and identify local sources of network-wide issues. For this purpose, Bayesian network learning (at the intersection of machine learning and network science) was utilized. Based on the calculated Bayesian networks (BNs), network metrics (inducer and susceptible) were formulated to quantify the network-wide impacts of the delays experienced at the stops. To implement the proposed framework, the delays at Long Island Rail Road (LIRR) were gathered through a crowdsourced real-time transit information app called onTime. The developed BN model was tested through cross-validation, yielded promising accuracy results, successfully identified the problematic stops based on LIRR reports, and provided further insights on network impacts. The BN model and the developed metrics were further tested using a natural experiment, i.e., a before and after study focusing on a recently completed track expansion project at LIRR. The findings imply that BN learning can successfully identify the network dependencies and indicate the rail links/corridors that are the best candidate for subsequent improvement investments. Overall, the developed metrics can quantify the delay dependencies between stops and they can be used by policy makers and practitioners for investment and improvement decisions." @default.
- W3080329174 created "2020-09-01" @default.
- W3080329174 creator A5023874610 @default.
- W3080329174 creator A5045540139 @default.
- W3080329174 creator A5076664111 @default.
- W3080329174 date "2020-10-01" @default.
- W3080329174 modified "2023-10-03" @default.
- W3080329174 title "Analyzing network-wide patterns of rail transit delays using Bayesian network learning" @default.
- W3080329174 cites W1936252253 @default.
- W3080329174 cites W1972440649 @default.
- W3080329174 cites W1988604380 @default.
- W3080329174 cites W1995459276 @default.
- W3080329174 cites W2012076162 @default.
- W3080329174 cites W2046258125 @default.
- W3080329174 cites W2079246731 @default.
- W3080329174 cites W2080702725 @default.
- W3080329174 cites W2126151607 @default.
- W3080329174 cites W2128088446 @default.
- W3080329174 cites W2148714761 @default.
- W3080329174 cites W2180217053 @default.
- W3080329174 cites W2342408036 @default.
- W3080329174 cites W2542154306 @default.
- W3080329174 cites W2610323442 @default.
- W3080329174 cites W2615062698 @default.
- W3080329174 cites W2791079235 @default.
- W3080329174 cites W2794204271 @default.
- W3080329174 cites W2887126012 @default.
- W3080329174 cites W2909238763 @default.
- W3080329174 cites W2936650651 @default.
- W3080329174 cites W3008790764 @default.
- W3080329174 doi "https://doi.org/10.1016/j.trc.2020.102749" @default.
- W3080329174 hasPublicationYear "2020" @default.
- W3080329174 type Work @default.
- W3080329174 sameAs 3080329174 @default.
- W3080329174 citedByCount "14" @default.
- W3080329174 countsByYear W30803291742021 @default.
- W3080329174 countsByYear W30803291742022 @default.
- W3080329174 countsByYear W30803291742023 @default.
- W3080329174 crossrefType "journal-article" @default.
- W3080329174 hasAuthorship W3080329174A5023874610 @default.
- W3080329174 hasAuthorship W3080329174A5045540139 @default.
- W3080329174 hasAuthorship W3080329174A5076664111 @default.
- W3080329174 hasBestOaLocation W30803291741 @default.
- W3080329174 hasConcept C107673813 @default.
- W3080329174 hasConcept C119599485 @default.
- W3080329174 hasConcept C119857082 @default.
- W3080329174 hasConcept C124101348 @default.
- W3080329174 hasConcept C127413603 @default.
- W3080329174 hasConcept C154945302 @default.
- W3080329174 hasConcept C22212356 @default.
- W3080329174 hasConcept C2778022998 @default.
- W3080329174 hasConcept C2780186347 @default.
- W3080329174 hasConcept C31258907 @default.
- W3080329174 hasConcept C32946077 @default.
- W3080329174 hasConcept C33724603 @default.
- W3080329174 hasConcept C41008148 @default.
- W3080329174 hasConcept C539828613 @default.
- W3080329174 hasConcept C64543145 @default.
- W3080329174 hasConcept C82142266 @default.
- W3080329174 hasConceptScore W3080329174C107673813 @default.
- W3080329174 hasConceptScore W3080329174C119599485 @default.
- W3080329174 hasConceptScore W3080329174C119857082 @default.
- W3080329174 hasConceptScore W3080329174C124101348 @default.
- W3080329174 hasConceptScore W3080329174C127413603 @default.
- W3080329174 hasConceptScore W3080329174C154945302 @default.
- W3080329174 hasConceptScore W3080329174C22212356 @default.
- W3080329174 hasConceptScore W3080329174C2778022998 @default.
- W3080329174 hasConceptScore W3080329174C2780186347 @default.
- W3080329174 hasConceptScore W3080329174C31258907 @default.
- W3080329174 hasConceptScore W3080329174C32946077 @default.
- W3080329174 hasConceptScore W3080329174C33724603 @default.
- W3080329174 hasConceptScore W3080329174C41008148 @default.
- W3080329174 hasConceptScore W3080329174C539828613 @default.
- W3080329174 hasConceptScore W3080329174C64543145 @default.
- W3080329174 hasConceptScore W3080329174C82142266 @default.
- W3080329174 hasLocation W30803291741 @default.
- W3080329174 hasLocation W30803291742 @default.
- W3080329174 hasOpenAccess W3080329174 @default.
- W3080329174 hasPrimaryLocation W30803291741 @default.
- W3080329174 hasRelatedWork W1560170243 @default.
- W3080329174 hasRelatedWork W1994673457 @default.
- W3080329174 hasRelatedWork W2061473111 @default.
- W3080329174 hasRelatedWork W2112004925 @default.
- W3080329174 hasRelatedWork W2162576764 @default.
- W3080329174 hasRelatedWork W2215058820 @default.
- W3080329174 hasRelatedWork W2405411278 @default.
- W3080329174 hasRelatedWork W2559419175 @default.
- W3080329174 hasRelatedWork W4229521721 @default.
- W3080329174 hasRelatedWork W4385957992 @default.
- W3080329174 hasVolume "119" @default.
- W3080329174 isParatext "false" @default.
- W3080329174 isRetracted "false" @default.
- W3080329174 magId "3080329174" @default.
- W3080329174 workType "article" @default.