Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080337117> ?p ?o ?g. }
- W3080337117 abstract "Abstract The accuracy of previous genetic studies in predicting polygenic psychiatric phenotypes has been limited mainly due to the limited power in distinguishing truly susceptible variants from null variants and the resulting overfitting. A novel prediction algorithm, Smooth-Threshold Multivariate Genetic Prediction (STMGP), was applied to improve the genome-based prediction of psychiatric phenotypes by decreasing overfitting through selecting variants and building a penalized regression model. Prediction models were trained using a cohort of 3685 subjects in Miyagi prefecture and validated with an independently recruited cohort of 3048 subjects in Iwate prefecture in Japan. Genotyping was performed using HumanOmniExpressExome BeadChip Arrays. We used the target phenotype of depressive symptoms and simulated phenotypes with varying complexity and various effect-size distributions of risk alleles. The prediction accuracy and the degree of overfitting of STMGP were compared with those of state-of-the-art models (polygenic risk scores, genomic best linear-unbiased prediction, summary-data-based best linear-unbiased prediction, BayesR, and ridge regression). In the prediction of depressive symptoms, compared with the other models, STMGP showed the highest prediction accuracy with the lowest degree of overfitting, although there was no significant difference in prediction accuracy. Simulation studies suggested that STMGP has a better prediction accuracy for moderately polygenic phenotypes. Our investigations suggest the potential usefulness of STMGP for predicting polygenic psychiatric conditions while avoiding overfitting." @default.
- W3080337117 created "2020-09-01" @default.
- W3080337117 creator A5013972052 @default.
- W3080337117 creator A5018416641 @default.
- W3080337117 creator A5026631659 @default.
- W3080337117 creator A5027133854 @default.
- W3080337117 creator A5027776738 @default.
- W3080337117 creator A5049356235 @default.
- W3080337117 creator A5055814626 @default.
- W3080337117 creator A5055963311 @default.
- W3080337117 creator A5059046902 @default.
- W3080337117 creator A5063192675 @default.
- W3080337117 creator A5067454062 @default.
- W3080337117 creator A5070727836 @default.
- W3080337117 creator A5073879473 @default.
- W3080337117 creator A5075718612 @default.
- W3080337117 creator A5080876255 @default.
- W3080337117 creator A5082275228 @default.
- W3080337117 creator A5084236462 @default.
- W3080337117 creator A5087451200 @default.
- W3080337117 date "2020-08-17" @default.
- W3080337117 modified "2023-09-26" @default.
- W3080337117 title "Machine learning for effectively avoiding overfitting is a crucial strategy for the genetic prediction of polygenic psychiatric phenotypes" @default.
- W3080337117 cites W1912672559 @default.
- W3080337117 cites W1963927438 @default.
- W3080337117 cites W1971141173 @default.
- W3080337117 cites W1971376634 @default.
- W3080337117 cites W1983539381 @default.
- W3080337117 cites W1991928779 @default.
- W3080337117 cites W1994910261 @default.
- W3080337117 cites W2019961888 @default.
- W3080337117 cites W2020925091 @default.
- W3080337117 cites W2025485131 @default.
- W3080337117 cites W2033151532 @default.
- W3080337117 cites W2044514692 @default.
- W3080337117 cites W2060501426 @default.
- W3080337117 cites W2084768311 @default.
- W3080337117 cites W2095741373 @default.
- W3080337117 cites W2097656361 @default.
- W3080337117 cites W2098597355 @default.
- W3080337117 cites W2104549677 @default.
- W3080337117 cites W2104846587 @default.
- W3080337117 cites W2108169091 @default.
- W3080337117 cites W2109176117 @default.
- W3080337117 cites W2112778345 @default.
- W3080337117 cites W2124204548 @default.
- W3080337117 cites W2134857847 @default.
- W3080337117 cites W2155496693 @default.
- W3080337117 cites W2157752701 @default.
- W3080337117 cites W2160068277 @default.
- W3080337117 cites W2161633633 @default.
- W3080337117 cites W2169795969 @default.
- W3080337117 cites W2170197613 @default.
- W3080337117 cites W2295159290 @default.
- W3080337117 cites W2341698347 @default.
- W3080337117 cites W2464466306 @default.
- W3080337117 cites W2492077070 @default.
- W3080337117 cites W2532448212 @default.
- W3080337117 cites W2560318205 @default.
- W3080337117 cites W2568497456 @default.
- W3080337117 cites W2735059498 @default.
- W3080337117 cites W2738082385 @default.
- W3080337117 cites W2768761371 @default.
- W3080337117 cites W2887191265 @default.
- W3080337117 cites W2894277631 @default.
- W3080337117 cites W2896927378 @default.
- W3080337117 cites W2911487850 @default.
- W3080337117 cites W2951456052 @default.
- W3080337117 cites W3029661147 @default.
- W3080337117 cites W4247571494 @default.
- W3080337117 doi "https://doi.org/10.1038/s41398-020-00957-5" @default.
- W3080337117 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7442807" @default.
- W3080337117 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32826857" @default.
- W3080337117 hasPublicationYear "2020" @default.
- W3080337117 type Work @default.
- W3080337117 sameAs 3080337117 @default.
- W3080337117 citedByCount "10" @default.
- W3080337117 countsByYear W30803371172020 @default.
- W3080337117 countsByYear W30803371172021 @default.
- W3080337117 countsByYear W30803371172022 @default.
- W3080337117 countsByYear W30803371172023 @default.
- W3080337117 crossrefType "journal-article" @default.
- W3080337117 hasAuthorship W3080337117A5013972052 @default.
- W3080337117 hasAuthorship W3080337117A5018416641 @default.
- W3080337117 hasAuthorship W3080337117A5026631659 @default.
- W3080337117 hasAuthorship W3080337117A5027133854 @default.
- W3080337117 hasAuthorship W3080337117A5027776738 @default.
- W3080337117 hasAuthorship W3080337117A5049356235 @default.
- W3080337117 hasAuthorship W3080337117A5055814626 @default.
- W3080337117 hasAuthorship W3080337117A5055963311 @default.
- W3080337117 hasAuthorship W3080337117A5059046902 @default.
- W3080337117 hasAuthorship W3080337117A5063192675 @default.
- W3080337117 hasAuthorship W3080337117A5067454062 @default.
- W3080337117 hasAuthorship W3080337117A5070727836 @default.
- W3080337117 hasAuthorship W3080337117A5073879473 @default.
- W3080337117 hasAuthorship W3080337117A5075718612 @default.
- W3080337117 hasAuthorship W3080337117A5080876255 @default.
- W3080337117 hasAuthorship W3080337117A5082275228 @default.
- W3080337117 hasAuthorship W3080337117A5084236462 @default.
- W3080337117 hasAuthorship W3080337117A5087451200 @default.