Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080351190> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3080351190 endingPage "794" @default.
- W3080351190 startingPage "780" @default.
- W3080351190 abstract "The paper is devoted to modelling the corruption perception index in panel data framework. As corruption index is bounded from below and above, traditional econometric multiple regression will produce a bad quality model. In order to correct that, we propose a mathematical framework for modelling bounded variables implementing a logistic function. It is shown that corruption is best explained by GDP per capita and all other major macroeconomic indicators cannot add any statistically significant improvement to the models’ accuracy. Thus, we assume, that society wealthiness facilitates the reduction of corruption acts. Indeed, if some individual lives in a society that does not experiences almost any shortage of resources of whatever kind, the less interested this person is in getting wealthier by applying some corruption schemes. These methods are rather popular in less wealthy countries, where temptation to engage into corruption is higher, since it can drastically increase individual’s utility function. Therefore, in this research we assert, that the growth of wealth in a society makes corruption recede and not the other way around (reducing corruption helps increase GDP per capita). However, the most counterintuitive finding of this research is the fact, that GDP per capita, adjusted by purchasing power parity, produces the model of a worse quality then just using plain GDP per capita. This fact can be tentatively explained by the flaws in the methodology of calculating these adjustments, since the basket of goods varies drastically across the countries." @default.
- W3080351190 created "2020-09-01" @default.
- W3080351190 creator A5017289896 @default.
- W3080351190 creator A5068252614 @default.
- W3080351190 creator A5078655715 @default.
- W3080351190 creator A5086154097 @default.
- W3080351190 date "2020-09-30" @default.
- W3080351190 modified "2023-10-13" @default.
- W3080351190 title "Investigating the relation of GDP per capita and corruption index" @default.
- W3080351190 doi "https://doi.org/10.9770/jesi.2020.8.1(52)" @default.
- W3080351190 hasPublicationYear "2020" @default.
- W3080351190 type Work @default.
- W3080351190 sameAs 3080351190 @default.
- W3080351190 citedByCount "64" @default.
- W3080351190 countsByYear W30803511902020 @default.
- W3080351190 countsByYear W30803511902021 @default.
- W3080351190 countsByYear W30803511902022 @default.
- W3080351190 countsByYear W30803511902023 @default.
- W3080351190 crossrefType "journal-article" @default.
- W3080351190 hasAuthorship W3080351190A5017289896 @default.
- W3080351190 hasAuthorship W3080351190A5068252614 @default.
- W3080351190 hasAuthorship W3080351190A5078655715 @default.
- W3080351190 hasAuthorship W3080351190A5086154097 @default.
- W3080351190 hasBestOaLocation W30803511901 @default.
- W3080351190 hasConcept C10138342 @default.
- W3080351190 hasConcept C124952713 @default.
- W3080351190 hasConcept C127598652 @default.
- W3080351190 hasConcept C136764020 @default.
- W3080351190 hasConcept C142362112 @default.
- W3080351190 hasConcept C144024400 @default.
- W3080351190 hasConcept C149782125 @default.
- W3080351190 hasConcept C149923435 @default.
- W3080351190 hasConcept C162324750 @default.
- W3080351190 hasConcept C167562979 @default.
- W3080351190 hasConcept C25343380 @default.
- W3080351190 hasConcept C2777382242 @default.
- W3080351190 hasConcept C2780027415 @default.
- W3080351190 hasConcept C2908647359 @default.
- W3080351190 hasConcept C41008148 @default.
- W3080351190 hasConcept C48824518 @default.
- W3080351190 hasConcept C77088390 @default.
- W3080351190 hasConcept C84309077 @default.
- W3080351190 hasConceptScore W3080351190C10138342 @default.
- W3080351190 hasConceptScore W3080351190C124952713 @default.
- W3080351190 hasConceptScore W3080351190C127598652 @default.
- W3080351190 hasConceptScore W3080351190C136764020 @default.
- W3080351190 hasConceptScore W3080351190C142362112 @default.
- W3080351190 hasConceptScore W3080351190C144024400 @default.
- W3080351190 hasConceptScore W3080351190C149782125 @default.
- W3080351190 hasConceptScore W3080351190C149923435 @default.
- W3080351190 hasConceptScore W3080351190C162324750 @default.
- W3080351190 hasConceptScore W3080351190C167562979 @default.
- W3080351190 hasConceptScore W3080351190C25343380 @default.
- W3080351190 hasConceptScore W3080351190C2777382242 @default.
- W3080351190 hasConceptScore W3080351190C2780027415 @default.
- W3080351190 hasConceptScore W3080351190C2908647359 @default.
- W3080351190 hasConceptScore W3080351190C41008148 @default.
- W3080351190 hasConceptScore W3080351190C48824518 @default.
- W3080351190 hasConceptScore W3080351190C77088390 @default.
- W3080351190 hasConceptScore W3080351190C84309077 @default.
- W3080351190 hasIssue "1" @default.
- W3080351190 hasLocation W30803511901 @default.
- W3080351190 hasLocation W30803511902 @default.
- W3080351190 hasOpenAccess W3080351190 @default.
- W3080351190 hasPrimaryLocation W30803511901 @default.
- W3080351190 hasRelatedWork W1511597968 @default.
- W3080351190 hasRelatedWork W2143890706 @default.
- W3080351190 hasRelatedWork W2606602924 @default.
- W3080351190 hasRelatedWork W2621769327 @default.
- W3080351190 hasRelatedWork W2726951400 @default.
- W3080351190 hasRelatedWork W2795707401 @default.
- W3080351190 hasRelatedWork W2943730145 @default.
- W3080351190 hasRelatedWork W4310169984 @default.
- W3080351190 hasRelatedWork W4313323187 @default.
- W3080351190 hasRelatedWork W2181310542 @default.
- W3080351190 hasVolume "8" @default.
- W3080351190 isParatext "false" @default.
- W3080351190 isRetracted "false" @default.
- W3080351190 magId "3080351190" @default.
- W3080351190 workType "article" @default.