Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080354218> ?p ?o ?g. }
- W3080354218 endingPage "082005" @default.
- W3080354218 startingPage "082005" @default.
- W3080354218 abstract "The thermal transpiration of molecular gas is investigated based on the model of Wu et al. [“A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases,” J. Fluid Mech. 763, 24–50 (2015)], which is solved by a synthetic iterative scheme efficiently and accurately. A detailed investigation of the thermal slip coefficient, Knudsen layer function, and mass flow rate for molecular gas interacting with the inverse power-law potential is performed. It is found that (i) the thermal slip coefficient and Knudsen layer function increase with the viscosity index determined by the intermolecular potential. Therefore, at small Knudsen number, gas with a larger viscosity index has a larger mass flow rate; however, at late transition and free molecular flow regimes, this is reversed. (ii) The thermal slip coefficient is a linear function of the accommodation coefficient in Maxwell’s diffuse–specular boundary condition, while its variation with the tangential momentum accommodation coefficient is complicated in Cercignani–Lampis’s boundary condition. (iii) The ratio of the thermal slip coefficients between monatomic and molecular gases is roughly the ratio of their translational Eucken factors, and thus, molecular gas always has a lower normalized mass flow rate than monatomic gas. (iv) In the transition flow regime, the translational Eucken factor continues to affect the mass flow rate of thermal transpiration, but in the free molecular flow regime, the mass flow rate converges to that of monatomic gas. Based on these results, accommodation coefficients were extracted from thermal transpiration experiments of air and carbon dioxide, which are found to be 0.9 and 0.85, respectively, rather than unity used in the literature. The methodology and data presented in this paper are useful, e.g., in the pressure correction of capacitance diaphragm gauge when measuring low gas pressures." @default.
- W3080354218 created "2020-09-01" @default.
- W3080354218 creator A5040952837 @default.
- W3080354218 creator A5049078993 @default.
- W3080354218 creator A5070400567 @default.
- W3080354218 date "2020-08-01" @default.
- W3080354218 modified "2023-10-16" @default.
- W3080354218 title "Thermal transpiration in molecular gas" @default.
- W3080354218 cites W1538135945 @default.
- W3080354218 cites W1823924715 @default.
- W3080354218 cites W1965626279 @default.
- W3080354218 cites W1965971942 @default.
- W3080354218 cites W1966822993 @default.
- W3080354218 cites W1972727539 @default.
- W3080354218 cites W1977433959 @default.
- W3080354218 cites W1979520843 @default.
- W3080354218 cites W1986427603 @default.
- W3080354218 cites W1988930130 @default.
- W3080354218 cites W1989438815 @default.
- W3080354218 cites W1991849166 @default.
- W3080354218 cites W1996671603 @default.
- W3080354218 cites W2003503944 @default.
- W3080354218 cites W2008003005 @default.
- W3080354218 cites W2009753502 @default.
- W3080354218 cites W2011401382 @default.
- W3080354218 cites W2012267485 @default.
- W3080354218 cites W2018813369 @default.
- W3080354218 cites W2020733228 @default.
- W3080354218 cites W2022111285 @default.
- W3080354218 cites W2022503570 @default.
- W3080354218 cites W2022946526 @default.
- W3080354218 cites W2025356638 @default.
- W3080354218 cites W2027013472 @default.
- W3080354218 cites W2031795473 @default.
- W3080354218 cites W2032339998 @default.
- W3080354218 cites W2045485653 @default.
- W3080354218 cites W2049727284 @default.
- W3080354218 cites W2059230494 @default.
- W3080354218 cites W2063382909 @default.
- W3080354218 cites W2066060292 @default.
- W3080354218 cites W2077194988 @default.
- W3080354218 cites W2083597099 @default.
- W3080354218 cites W2087448935 @default.
- W3080354218 cites W2091867396 @default.
- W3080354218 cites W2095203061 @default.
- W3080354218 cites W2098918065 @default.
- W3080354218 cites W2100947465 @default.
- W3080354218 cites W2106212989 @default.
- W3080354218 cites W2118783842 @default.
- W3080354218 cites W2120798059 @default.
- W3080354218 cites W2124197272 @default.
- W3080354218 cites W2126434014 @default.
- W3080354218 cites W2133733380 @default.
- W3080354218 cites W2135010991 @default.
- W3080354218 cites W2138887979 @default.
- W3080354218 cites W2143113068 @default.
- W3080354218 cites W2154744653 @default.
- W3080354218 cites W2171681302 @default.
- W3080354218 cites W2337146837 @default.
- W3080354218 cites W2340167042 @default.
- W3080354218 cites W2582585095 @default.
- W3080354218 cites W2596867176 @default.
- W3080354218 cites W2749282744 @default.
- W3080354218 cites W282307699 @default.
- W3080354218 cites W2901912205 @default.
- W3080354218 cites W2999328515 @default.
- W3080354218 cites W3029632513 @default.
- W3080354218 cites W3082784833 @default.
- W3080354218 cites W320092533 @default.
- W3080354218 cites W40634382 @default.
- W3080354218 cites W4214628711 @default.
- W3080354218 cites W4236974991 @default.
- W3080354218 cites W4250836674 @default.
- W3080354218 doi "https://doi.org/10.1063/5.0018505" @default.
- W3080354218 hasPublicationYear "2020" @default.
- W3080354218 type Work @default.
- W3080354218 sameAs 3080354218 @default.
- W3080354218 citedByCount "19" @default.
- W3080354218 countsByYear W30803542182020 @default.
- W3080354218 countsByYear W30803542182021 @default.
- W3080354218 countsByYear W30803542182022 @default.
- W3080354218 countsByYear W30803542182023 @default.
- W3080354218 crossrefType "journal-article" @default.
- W3080354218 hasAuthorship W3080354218A5040952837 @default.
- W3080354218 hasAuthorship W3080354218A5049078993 @default.
- W3080354218 hasAuthorship W3080354218A5070400567 @default.
- W3080354218 hasConcept C121332964 @default.
- W3080354218 hasConcept C121838276 @default.
- W3080354218 hasConcept C126350175 @default.
- W3080354218 hasConcept C152149077 @default.
- W3080354218 hasConcept C2780096971 @default.
- W3080354218 hasConcept C46844702 @default.
- W3080354218 hasConcept C62520636 @default.
- W3080354218 hasConcept C97355855 @default.
- W3080354218 hasConceptScore W3080354218C121332964 @default.
- W3080354218 hasConceptScore W3080354218C121838276 @default.
- W3080354218 hasConceptScore W3080354218C126350175 @default.
- W3080354218 hasConceptScore W3080354218C152149077 @default.