Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080370147> ?p ?o ?g. }
- W3080370147 endingPage "e0235401" @default.
- W3080370147 startingPage "e0235401" @default.
- W3080370147 abstract "Background Current malaria control and elimination strategies rely mainly on efficacious antimalarial drugs. However, drug resistance is a major threat facing malaria control programs. Determination of drug resistance molecular markers is useful in the monitoring and surveillance of malaria drug efficacy. This study aimed to determine the mutations and haplotypes frequencies of different genes linked with antimalarial drug resistance in certain areas in Sudan. Methods A total of 226 dried blood spots (DBS) of microscopically diagnosed P. falciparum isolates were collected from Khartoum and three other areas in Sudan during 2015–2017. Plasmodium falciparum confirmation and multiplicity of infection was assessed using the Sanger’s 101 SNPs-barcode and speciation was confirmed using regions of the parasite mitochondria. Molecular genotyping of drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, exonuclease, Pfk13, parasite genetic background (PGB) (Pfarps10, ferredoxin, Pfcrt, Pfmdr2)) was also performed. All genotypes were generated by selective regions amplicon sequencing of the parasite genome using the Illumina MiSeq platform at the Wellcome Sanger Institute, UK then genotypes were translated into drug resistance haplotypes and species determination. Findings In total 225 samples were confirmed to be P. falciparum. A higher proportion of multiplicity of infection was observed in Gezira (P<0.001) based on the Sanger 101 SNPs -barcode. The overall frequency of mutant haplotype Pfcrt 72–76 CVIET was 71.8%. For Pfmdr1, N86Y was detected in 53.6%, Y184F was observed in 88.1% and D1246Y was detected in 1.5% of the samples. The most frequently observed haplotype was YFD 47.4%. For Pfdhfr (codons 51, 59,108,164), the ICNI haplotype was the most frequent (80.7%) while for Pfdhps (codons 436, 437, 540, 581, 613) the (SGEAA) was most frequent haplotype (41%). The Quadruple mutation (dhfr N51I, S108N + dhps A437G, K540E) was the highest frequent combined mutation (33.9%). In Pfkelch13 gene, 18 non‐synonymous mutations were detected, 7 of them were detected in other African countries. The most frequent Pfk13 mutation was E433D detected in four samples. All of the Pfk13 mutant alleles have not been reported to belong to mutations associated with delayed parasite clearance in Southeast Asia. PGB mutations were detected only in Pfcrt N326SI (46.3%) and Pfcrt I356T (8.2%). The exonuclease mutation was not detected. There was no significant variation in mutant haplotypes between study areas. Conclusions There was high frequency of mutations in Pfcrt, Pfdhfr and Pfdhps in this study. These mutations are associated with chloroquine and sulfadoxine-pyrimethamine (SP) resistance. Many SNPs in Pfk13 not linked with delayed parasite clearance were observed. The exonuclease E415G mutation which is linked with piperaquine resistance was not reported." @default.
- W3080370147 created "2020-09-01" @default.
- W3080370147 creator A5012253545 @default.
- W3080370147 creator A5015783215 @default.
- W3080370147 creator A5020422048 @default.
- W3080370147 creator A5023603188 @default.
- W3080370147 creator A5048403525 @default.
- W3080370147 creator A5060549191 @default.
- W3080370147 creator A5086366031 @default.
- W3080370147 creator A5088958746 @default.
- W3080370147 date "2020-08-20" @default.
- W3080370147 modified "2023-10-16" @default.
- W3080370147 title "Antimalarial drug resistance molecular makers of Plasmodium falciparum isolates from Sudan during 2015–2017" @default.
- W3080370147 cites W1919623352 @default.
- W3080370147 cites W1940072256 @default.
- W3080370147 cites W1966124517 @default.
- W3080370147 cites W1969571661 @default.
- W3080370147 cites W1972177048 @default.
- W3080370147 cites W1994373940 @default.
- W3080370147 cites W1999748946 @default.
- W3080370147 cites W2000312835 @default.
- W3080370147 cites W2009021681 @default.
- W3080370147 cites W2009146673 @default.
- W3080370147 cites W2019358007 @default.
- W3080370147 cites W2041345047 @default.
- W3080370147 cites W2048662221 @default.
- W3080370147 cites W2053908340 @default.
- W3080370147 cites W2055641730 @default.
- W3080370147 cites W2055730063 @default.
- W3080370147 cites W2081729133 @default.
- W3080370147 cites W2090438527 @default.
- W3080370147 cites W2095152075 @default.
- W3080370147 cites W2103439634 @default.
- W3080370147 cites W2110269548 @default.
- W3080370147 cites W2119156545 @default.
- W3080370147 cites W2120009689 @default.
- W3080370147 cites W2123889383 @default.
- W3080370147 cites W2124634096 @default.
- W3080370147 cites W2131233198 @default.
- W3080370147 cites W2138398659 @default.
- W3080370147 cites W2141125668 @default.
- W3080370147 cites W2148055867 @default.
- W3080370147 cites W2155740600 @default.
- W3080370147 cites W2162056783 @default.
- W3080370147 cites W2162629756 @default.
- W3080370147 cites W2164272027 @default.
- W3080370147 cites W2170300319 @default.
- W3080370147 cites W2171102256 @default.
- W3080370147 cites W2397788564 @default.
- W3080370147 cites W2398110767 @default.
- W3080370147 cites W2467259677 @default.
- W3080370147 cites W2547042202 @default.
- W3080370147 cites W2581965723 @default.
- W3080370147 cites W2590767446 @default.
- W3080370147 cites W2737092650 @default.
- W3080370147 cites W2760888089 @default.
- W3080370147 cites W2791105224 @default.
- W3080370147 cites W2943952460 @default.
- W3080370147 cites W2951816935 @default.
- W3080370147 doi "https://doi.org/10.1371/journal.pone.0235401" @default.
- W3080370147 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7446868" @default.
- W3080370147 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32817665" @default.
- W3080370147 hasPublicationYear "2020" @default.
- W3080370147 type Work @default.
- W3080370147 sameAs 3080370147 @default.
- W3080370147 citedByCount "13" @default.
- W3080370147 countsByYear W30803701472020 @default.
- W3080370147 countsByYear W30803701472021 @default.
- W3080370147 countsByYear W30803701472022 @default.
- W3080370147 countsByYear W30803701472023 @default.
- W3080370147 crossrefType "journal-article" @default.
- W3080370147 hasAuthorship W3080370147A5012253545 @default.
- W3080370147 hasAuthorship W3080370147A5015783215 @default.
- W3080370147 hasAuthorship W3080370147A5020422048 @default.
- W3080370147 hasAuthorship W3080370147A5023603188 @default.
- W3080370147 hasAuthorship W3080370147A5048403525 @default.
- W3080370147 hasAuthorship W3080370147A5060549191 @default.
- W3080370147 hasAuthorship W3080370147A5086366031 @default.
- W3080370147 hasAuthorship W3080370147A5088958746 @default.
- W3080370147 hasBestOaLocation W30803701471 @default.
- W3080370147 hasConcept C104317684 @default.
- W3080370147 hasConcept C114851261 @default.
- W3080370147 hasConcept C135763542 @default.
- W3080370147 hasConcept C153209595 @default.
- W3080370147 hasConcept C159047783 @default.
- W3080370147 hasConcept C197754878 @default.
- W3080370147 hasConcept C203014093 @default.
- W3080370147 hasConcept C2777035104 @default.
- W3080370147 hasConcept C2777234095 @default.
- W3080370147 hasConcept C2778048844 @default.
- W3080370147 hasConcept C2778371730 @default.
- W3080370147 hasConcept C31467283 @default.
- W3080370147 hasConcept C51679486 @default.
- W3080370147 hasConcept C54355233 @default.
- W3080370147 hasConcept C76818968 @default.
- W3080370147 hasConcept C86803240 @default.
- W3080370147 hasConceptScore W3080370147C104317684 @default.
- W3080370147 hasConceptScore W3080370147C114851261 @default.