Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080371574> ?p ?o ?g. }
- W3080371574 endingPage "2688" @default.
- W3080371574 startingPage "2688" @default.
- W3080371574 abstract "Flash flood is one of the most dangerous natural phenomena because of its high magnitudes and sudden occurrence, resulting in huge damages for people and properties. Our work aims to propose a state-of-the-art model for susceptibility mapping of the flash flood using the decision tree random subspace ensemble optimized by hybrid firefly–particle swarm optimization (HFPS), namely the HFPS-RSTree model. In this work, we used data from a flood inventory map consisting of 1866 polygons derived from Sentinel-1 C-band synthetic aperture radar (SAR) data and a field survey conducted in the northwest mountainous area of the Van Ban district, Lao Cai Province in Vietnam. A total of eleven flooding conditioning factors (soil type, geology, rainfall, river density, elevation, slope, aspect, topographic wetness index (TWI), normalized difference vegetation index (NDVI), plant curvature, and profile curvature) were used as explanatory variables. These indicators were compiled from a geological and mineral resources map, soil type map, and topographic map, ALOS PALSAR DEM 30 m, and Landsat-8 imagery. The HFPS-RSTree model was trained and verified using the inventory map and the eleven conditioning variables and then compared with four machine learning algorithms, i.e., the support vector machine (SVM), the random forests (RF), the C4.5 decision trees (C4.5 DT), and the logistic model trees (LMT) models. We employed a range of statistical standard metrics to assess the predictive performance of the proposed model. The results show that the HFPS-RSTree model had the best predictive performance and achieved better results than those of other benchmarks with the ability to predict flash flood, reaching an overall accuracy of over 90%. It can be concluded that the proposed approach provides new insights into flash flood prediction in mountainous regions." @default.
- W3080371574 created "2020-09-01" @default.
- W3080371574 creator A5000315193 @default.
- W3080371574 creator A5011172970 @default.
- W3080371574 creator A5035614978 @default.
- W3080371574 creator A5037416134 @default.
- W3080371574 creator A5038919661 @default.
- W3080371574 creator A5048764248 @default.
- W3080371574 creator A5057827828 @default.
- W3080371574 creator A5071401582 @default.
- W3080371574 creator A5075393375 @default.
- W3080371574 creator A5076352077 @default.
- W3080371574 creator A5077849315 @default.
- W3080371574 creator A5081665504 @default.
- W3080371574 creator A5086351809 @default.
- W3080371574 date "2020-08-20" @default.
- W3080371574 modified "2023-10-16" @default.
- W3080371574 title "A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping" @default.
- W3080371574 cites W1972183204 @default.
- W3080371574 cites W1974614011 @default.
- W3080371574 cites W1980998438 @default.
- W3080371574 cites W2009985472 @default.
- W3080371574 cites W2023199778 @default.
- W3080371574 cites W2027776806 @default.
- W3080371574 cites W2030473950 @default.
- W3080371574 cites W2042315239 @default.
- W3080371574 cites W2073883415 @default.
- W3080371574 cites W2108484081 @default.
- W3080371574 cites W2113242816 @default.
- W3080371574 cites W2146773183 @default.
- W3080371574 cites W2165056704 @default.
- W3080371574 cites W2326556008 @default.
- W3080371574 cites W2423094380 @default.
- W3080371574 cites W2524765762 @default.
- W3080371574 cites W2563233610 @default.
- W3080371574 cites W2594352094 @default.
- W3080371574 cites W2606804832 @default.
- W3080371574 cites W2640557513 @default.
- W3080371574 cites W2740518424 @default.
- W3080371574 cites W2752126216 @default.
- W3080371574 cites W2755302004 @default.
- W3080371574 cites W2755533000 @default.
- W3080371574 cites W2761698665 @default.
- W3080371574 cites W2767883755 @default.
- W3080371574 cites W2789635557 @default.
- W3080371574 cites W2791328889 @default.
- W3080371574 cites W2797485770 @default.
- W3080371574 cites W2809099638 @default.
- W3080371574 cites W2809889051 @default.
- W3080371574 cites W2886597297 @default.
- W3080371574 cites W2887697414 @default.
- W3080371574 cites W2891636131 @default.
- W3080371574 cites W2895196240 @default.
- W3080371574 cites W2899026392 @default.
- W3080371574 cites W2901543857 @default.
- W3080371574 cites W2906216608 @default.
- W3080371574 cites W2938393691 @default.
- W3080371574 cites W2941114027 @default.
- W3080371574 cites W2941390826 @default.
- W3080371574 cites W2946020082 @default.
- W3080371574 cites W2946806928 @default.
- W3080371574 cites W2947721686 @default.
- W3080371574 cites W2969608668 @default.
- W3080371574 cites W2973053290 @default.
- W3080371574 cites W2979804492 @default.
- W3080371574 cites W2987881131 @default.
- W3080371574 cites W2989700724 @default.
- W3080371574 cites W2998999740 @default.
- W3080371574 cites W3002639097 @default.
- W3080371574 cites W3010444683 @default.
- W3080371574 cites W3011949985 @default.
- W3080371574 cites W3022568498 @default.
- W3080371574 cites W3032913569 @default.
- W3080371574 cites W3046846028 @default.
- W3080371574 doi "https://doi.org/10.3390/rs12172688" @default.
- W3080371574 hasPublicationYear "2020" @default.
- W3080371574 type Work @default.
- W3080371574 sameAs 3080371574 @default.
- W3080371574 citedByCount "38" @default.
- W3080371574 countsByYear W30803715742020 @default.
- W3080371574 countsByYear W30803715742021 @default.
- W3080371574 countsByYear W30803715742022 @default.
- W3080371574 countsByYear W30803715742023 @default.
- W3080371574 crossrefType "journal-article" @default.
- W3080371574 hasAuthorship W3080371574A5000315193 @default.
- W3080371574 hasAuthorship W3080371574A5011172970 @default.
- W3080371574 hasAuthorship W3080371574A5035614978 @default.
- W3080371574 hasAuthorship W3080371574A5037416134 @default.
- W3080371574 hasAuthorship W3080371574A5038919661 @default.
- W3080371574 hasAuthorship W3080371574A5048764248 @default.
- W3080371574 hasAuthorship W3080371574A5057827828 @default.
- W3080371574 hasAuthorship W3080371574A5071401582 @default.
- W3080371574 hasAuthorship W3080371574A5075393375 @default.
- W3080371574 hasAuthorship W3080371574A5076352077 @default.
- W3080371574 hasAuthorship W3080371574A5077849315 @default.
- W3080371574 hasAuthorship W3080371574A5081665504 @default.
- W3080371574 hasAuthorship W3080371574A5086351809 @default.
- W3080371574 hasBestOaLocation W30803715741 @default.