Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080415511> ?p ?o ?g. }
- W3080415511 endingPage "1390" @default.
- W3080415511 startingPage "1390" @default.
- W3080415511 abstract "Smoke detection plays an important role in forest safety warning systems and fire prevention. Complicated changes in the shape, texture, and color of smoke remain a substantial challenge to identify smoke in a given image. In this paper, a new algorithm using the deep belief network (DBN) is designed for smoke detection. Unlike popular deep convolutional networks (e.g., Alex-Net, VGG-Net, Res-Net, Dense-Net, and the denoising convolution neural network (DNCNN), specifically devoted to detecting smoke), our proposed end-to-end network is mainly based on DBN. Indeed, most traditional smoke detection algorithms follow the pattern recognition process which consists basically feature extraction and classification. After extracting the candidate regions, the main idea is to perform both smoke recognition and smoke-no-smoke region classification using static and dynamic smoke characteristics. However, manual smoke detection cannot meet the requirements of a high smoke detection rate and has a long processing time. The convolutional neural network (CNN)-based smoke detection methods are significantly slower due to the maxpooling operation. In addition, the training phase can take a lot of time if the computer is not equipped with a powerful graphics processing unit (GPU). Thus, the contribution of this work is the development of a preprocessing step including a new combination of features—smoke color, smoke motion, and energy—to extract the regions of interest which are inserted within a simple architecture with the deep belief network (DBN). Our proposed method is able to classify and localize reliably the smoke regions providing an interesting computation time and improved performance metrics. First, the Gaussian mixture model (GMM) is employed to capture the frames containing a large amount of motion. After applying RGB rules to smoke pixels and analyzing the energy attitude of smoke regions, extracted features are then used to feed a DBN for classification. Experimental results conducted on the publicly available smoke detection database confirm that the DBN has reached a high detection rate that exceeded an average of 96% when tested on different videos containing smoke-like objects, which make smoke recognition more challenging. The proposed methodology provided high detection ratios and low false alarms, and guaranteed robustness verified by evaluations of accuracy, F1-score, and recall for noisy and non-noisy images with and without noise." @default.
- W3080415511 created "2020-09-01" @default.
- W3080415511 creator A5007949063 @default.
- W3080415511 creator A5061200301 @default.
- W3080415511 creator A5062576682 @default.
- W3080415511 creator A5073163982 @default.
- W3080415511 creator A5090550857 @default.
- W3080415511 date "2020-08-27" @default.
- W3080415511 modified "2023-10-05" @default.
- W3080415511 title "An Efficient Smoke Detection Algorithm Based on Deep Belief Network Classifier Using Energy and Intensity Features" @default.
- W3080415511 cites W1560622607 @default.
- W3080415511 cites W1578285471 @default.
- W3080415511 cites W1731714892 @default.
- W3080415511 cites W1977377723 @default.
- W3080415511 cites W1997951305 @default.
- W3080415511 cites W2006336191 @default.
- W3080415511 cites W2028339660 @default.
- W3080415511 cites W2071166218 @default.
- W3080415511 cites W2082160633 @default.
- W3080415511 cites W2090578816 @default.
- W3080415511 cites W2112796928 @default.
- W3080415511 cites W2116064496 @default.
- W3080415511 cites W2136922672 @default.
- W3080415511 cites W2143774317 @default.
- W3080415511 cites W2172000360 @default.
- W3080415511 cites W2283113811 @default.
- W3080415511 cites W2509694794 @default.
- W3080415511 cites W2586951686 @default.
- W3080415511 cites W2751420734 @default.
- W3080415511 cites W2757312963 @default.
- W3080415511 cites W2780650076 @default.
- W3080415511 cites W2797373405 @default.
- W3080415511 cites W2945689790 @default.
- W3080415511 cites W2956265248 @default.
- W3080415511 cites W2963155258 @default.
- W3080415511 cites W4231339208 @default.
- W3080415511 cites W646984897 @default.
- W3080415511 doi "https://doi.org/10.3390/electronics9091390" @default.
- W3080415511 hasPublicationYear "2020" @default.
- W3080415511 type Work @default.
- W3080415511 sameAs 3080415511 @default.
- W3080415511 citedByCount "7" @default.
- W3080415511 countsByYear W30804155112020 @default.
- W3080415511 countsByYear W30804155112021 @default.
- W3080415511 countsByYear W30804155112023 @default.
- W3080415511 crossrefType "journal-article" @default.
- W3080415511 hasAuthorship W3080415511A5007949063 @default.
- W3080415511 hasAuthorship W3080415511A5061200301 @default.
- W3080415511 hasAuthorship W3080415511A5062576682 @default.
- W3080415511 hasAuthorship W3080415511A5073163982 @default.
- W3080415511 hasAuthorship W3080415511A5090550857 @default.
- W3080415511 hasBestOaLocation W30804155111 @default.
- W3080415511 hasConcept C108583219 @default.
- W3080415511 hasConcept C127413603 @default.
- W3080415511 hasConcept C153180895 @default.
- W3080415511 hasConcept C154945302 @default.
- W3080415511 hasConcept C31972630 @default.
- W3080415511 hasConcept C34736171 @default.
- W3080415511 hasConcept C41008148 @default.
- W3080415511 hasConcept C50644808 @default.
- W3080415511 hasConcept C52622490 @default.
- W3080415511 hasConcept C548081761 @default.
- W3080415511 hasConcept C58874564 @default.
- W3080415511 hasConcept C81363708 @default.
- W3080415511 hasConcept C97385483 @default.
- W3080415511 hasConceptScore W3080415511C108583219 @default.
- W3080415511 hasConceptScore W3080415511C127413603 @default.
- W3080415511 hasConceptScore W3080415511C153180895 @default.
- W3080415511 hasConceptScore W3080415511C154945302 @default.
- W3080415511 hasConceptScore W3080415511C31972630 @default.
- W3080415511 hasConceptScore W3080415511C34736171 @default.
- W3080415511 hasConceptScore W3080415511C41008148 @default.
- W3080415511 hasConceptScore W3080415511C50644808 @default.
- W3080415511 hasConceptScore W3080415511C52622490 @default.
- W3080415511 hasConceptScore W3080415511C548081761 @default.
- W3080415511 hasConceptScore W3080415511C58874564 @default.
- W3080415511 hasConceptScore W3080415511C81363708 @default.
- W3080415511 hasConceptScore W3080415511C97385483 @default.
- W3080415511 hasIssue "9" @default.
- W3080415511 hasLocation W30804155111 @default.
- W3080415511 hasLocation W30804155112 @default.
- W3080415511 hasLocation W30804155113 @default.
- W3080415511 hasLocation W30804155114 @default.
- W3080415511 hasLocation W30804155115 @default.
- W3080415511 hasOpenAccess W3080415511 @default.
- W3080415511 hasPrimaryLocation W30804155111 @default.
- W3080415511 hasRelatedWork W2126100045 @default.
- W3080415511 hasRelatedWork W2279398222 @default.
- W3080415511 hasRelatedWork W2391959412 @default.
- W3080415511 hasRelatedWork W2566433444 @default.
- W3080415511 hasRelatedWork W2999805992 @default.
- W3080415511 hasRelatedWork W3156786002 @default.
- W3080415511 hasRelatedWork W4299822940 @default.
- W3080415511 hasRelatedWork W4315783664 @default.
- W3080415511 hasRelatedWork W4321369474 @default.
- W3080415511 hasRelatedWork W4366492315 @default.
- W3080415511 hasVolume "9" @default.
- W3080415511 isParatext "false" @default.