Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080426972> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3080426972 endingPage "2047" @default.
- W3080426972 startingPage "2043" @default.
- W3080426972 abstract "This work introduces the use of Gaussian processes (GPs) for the estimation and understanding of crop development and yield using multisensor satellite observations and meteorological data. The proposed methodology combines synergistic information on canopy greenness, biomass, soil, and plant water content from optical and microwave sensors with the atmospheric variables typically measured at meteorological stations. A composite covariance is used in the GP model to account for varying scales, nonstationary, and nonlinear processes. The GP model reports noticeable gains in terms of accuracy with respect to other machine learning approaches for the estimation of corn, wheat, and soybean yields consistently for four years of data across continental U.S. (CONUS). Sparse GPs allow obtaining fast and compact solutions up to a limit, where heavy sparsity compromises the credibility of confidence intervals. We further study the GP interpretability by sensitivity analysis, which reveals that remote sensing parameters accounting for soil moisture and greenness mainly drive the model predictions. GPs finally allow us to identify climate extremes and anomalies impacting crop productivity and their associated drivers." @default.
- W3080426972 created "2020-09-01" @default.
- W3080426972 creator A5032528806 @default.
- W3080426972 creator A5039052506 @default.
- W3080426972 creator A5091901968 @default.
- W3080426972 date "2021-12-01" @default.
- W3080426972 modified "2023-10-02" @default.
- W3080426972 title "Crop Yield Estimation and Interpretability With Gaussian Processes" @default.
- W3080426972 cites W2086710305 @default.
- W3080426972 cites W2148333466 @default.
- W3080426972 cites W2167881994 @default.
- W3080426972 cites W2413379912 @default.
- W3080426972 cites W2731015236 @default.
- W3080426972 cites W2734608208 @default.
- W3080426972 cites W2746218879 @default.
- W3080426972 cites W2888213888 @default.
- W3080426972 cites W2969766133 @default.
- W3080426972 cites W2981383845 @default.
- W3080426972 cites W2983590566 @default.
- W3080426972 cites W2999884014 @default.
- W3080426972 cites W3100157715 @default.
- W3080426972 doi "https://doi.org/10.1109/lgrs.2020.3016140" @default.
- W3080426972 hasPublicationYear "2021" @default.
- W3080426972 type Work @default.
- W3080426972 sameAs 3080426972 @default.
- W3080426972 citedByCount "15" @default.
- W3080426972 countsByYear W30804269722021 @default.
- W3080426972 countsByYear W30804269722022 @default.
- W3080426972 countsByYear W30804269722023 @default.
- W3080426972 crossrefType "journal-article" @default.
- W3080426972 hasAuthorship W3080426972A5032528806 @default.
- W3080426972 hasAuthorship W3080426972A5039052506 @default.
- W3080426972 hasAuthorship W3080426972A5091901968 @default.
- W3080426972 hasBestOaLocation W30804269722 @default.
- W3080426972 hasConcept C105795698 @default.
- W3080426972 hasConcept C119857082 @default.
- W3080426972 hasConcept C121332964 @default.
- W3080426972 hasConcept C163716315 @default.
- W3080426972 hasConcept C178650346 @default.
- W3080426972 hasConcept C205649164 @default.
- W3080426972 hasConcept C2781067378 @default.
- W3080426972 hasConcept C33923547 @default.
- W3080426972 hasConcept C39432304 @default.
- W3080426972 hasConcept C41008148 @default.
- W3080426972 hasConcept C60229501 @default.
- W3080426972 hasConcept C61326573 @default.
- W3080426972 hasConcept C62520636 @default.
- W3080426972 hasConcept C62649853 @default.
- W3080426972 hasConcept C76155785 @default.
- W3080426972 hasConceptScore W3080426972C105795698 @default.
- W3080426972 hasConceptScore W3080426972C119857082 @default.
- W3080426972 hasConceptScore W3080426972C121332964 @default.
- W3080426972 hasConceptScore W3080426972C163716315 @default.
- W3080426972 hasConceptScore W3080426972C178650346 @default.
- W3080426972 hasConceptScore W3080426972C205649164 @default.
- W3080426972 hasConceptScore W3080426972C2781067378 @default.
- W3080426972 hasConceptScore W3080426972C33923547 @default.
- W3080426972 hasConceptScore W3080426972C39432304 @default.
- W3080426972 hasConceptScore W3080426972C41008148 @default.
- W3080426972 hasConceptScore W3080426972C60229501 @default.
- W3080426972 hasConceptScore W3080426972C61326573 @default.
- W3080426972 hasConceptScore W3080426972C62520636 @default.
- W3080426972 hasConceptScore W3080426972C62649853 @default.
- W3080426972 hasConceptScore W3080426972C76155785 @default.
- W3080426972 hasFunder F4320334678 @default.
- W3080426972 hasIssue "12" @default.
- W3080426972 hasLocation W30804269721 @default.
- W3080426972 hasLocation W30804269722 @default.
- W3080426972 hasOpenAccess W3080426972 @default.
- W3080426972 hasPrimaryLocation W30804269721 @default.
- W3080426972 hasRelatedWork W2051558715 @default.
- W3080426972 hasRelatedWork W2060891144 @default.
- W3080426972 hasRelatedWork W2152000271 @default.
- W3080426972 hasRelatedWork W2885685774 @default.
- W3080426972 hasRelatedWork W2979423456 @default.
- W3080426972 hasRelatedWork W2983881875 @default.
- W3080426972 hasRelatedWork W3012934645 @default.
- W3080426972 hasRelatedWork W3037003270 @default.
- W3080426972 hasRelatedWork W3204990179 @default.
- W3080426972 hasRelatedWork W4320341949 @default.
- W3080426972 hasVolume "18" @default.
- W3080426972 isParatext "false" @default.
- W3080426972 isRetracted "false" @default.
- W3080426972 magId "3080426972" @default.
- W3080426972 workType "article" @default.