Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080433234> ?p ?o ?g. }
- W3080433234 endingPage "2718" @default.
- W3080433234 startingPage "2718" @default.
- W3080433234 abstract "Digital elevation models (DEMs) are the most obvious data sources in landslide susceptibility assessment. Many landslide casual factors are often generated from DEMs. Most studies on landslide susceptibility assessments rely on freely available DEMs. However, very little is known about the performance of different DEMs with varying spatial resolutions on the accurate assessment of landslide susceptibility. This study compared the performance of four different DEMs including 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), 30–90 m Shuttle Radar Topographic Mission (SRTM), 12.5 m Advanced Land Observation Satellite (ALOS) Phased Array Type L band Synthetic Aperture Radar (PALSAR), and 25 m Survey of Bangladesh (SOB) DEM in landslide susceptibility assessment in the Rangamati district in Bangladesh. This study used three different landslide susceptibility assessment techniques: modified frequency ratio (bivariate model), logistic regression (multivariate model), and random forest (machine-learning model). This study explored two scenarios of landslide susceptibility assessment: using only DEM-derived causal factors and using both DEM-derived factors as well as other common factors. The success and prediction rate curves indicate that the SRTM DEM provides the highest accuracies for the bivariate model in both scenarios. Results also reveal that the ALOS PALSAR DEM shows the best performance in landslide susceptibility mapping using the logistics regression and the random forest models. A relatively finer resolution DEM, the SOB DEM, shows the lowest accuracies compared to other DEMs for all models and scenarios. It can also be noted that the performance of all DEMs except the SOB DEM is close (72%–84%) considering the success and prediction accuracies. Therefore, anyone of the three global DEMs: ASTER, SRTM, and ALOS PALSAR can be used for landslide susceptibility mapping in the study area." @default.
- W3080433234 created "2020-09-01" @default.
- W3080433234 creator A5003847530 @default.
- W3080433234 creator A5020972581 @default.
- W3080433234 creator A5078736973 @default.
- W3080433234 date "2020-08-22" @default.
- W3080433234 modified "2023-10-14" @default.
- W3080433234 title "Evaluating the Effects of Digital Elevation Models in Landslide Susceptibility Mapping in Rangamati District, Bangladesh" @default.
- W3080433234 cites W1014394669 @default.
- W3080433234 cites W1533241898 @default.
- W3080433234 cites W1973637706 @default.
- W3080433234 cites W1979486410 @default.
- W3080433234 cites W1979973772 @default.
- W3080433234 cites W1980725494 @default.
- W3080433234 cites W1989402465 @default.
- W3080433234 cites W1993753658 @default.
- W3080433234 cites W2012118327 @default.
- W3080433234 cites W2017458088 @default.
- W3080433234 cites W2019622179 @default.
- W3080433234 cites W2021765639 @default.
- W3080433234 cites W2040990873 @default.
- W3080433234 cites W2045518796 @default.
- W3080433234 cites W2058082754 @default.
- W3080433234 cites W2066685935 @default.
- W3080433234 cites W2076812056 @default.
- W3080433234 cites W2080940820 @default.
- W3080433234 cites W2095057310 @default.
- W3080433234 cites W2097698267 @default.
- W3080433234 cites W2103540160 @default.
- W3080433234 cites W2117350110 @default.
- W3080433234 cites W2128964295 @default.
- W3080433234 cites W2132657008 @default.
- W3080433234 cites W2137486440 @default.
- W3080433234 cites W2140964565 @default.
- W3080433234 cites W2143192068 @default.
- W3080433234 cites W2236234032 @default.
- W3080433234 cites W2287788949 @default.
- W3080433234 cites W2294233453 @default.
- W3080433234 cites W2324349273 @default.
- W3080433234 cites W2487939687 @default.
- W3080433234 cites W2489814317 @default.
- W3080433234 cites W2515491597 @default.
- W3080433234 cites W2556663267 @default.
- W3080433234 cites W2567326027 @default.
- W3080433234 cites W2581426619 @default.
- W3080433234 cites W2600537488 @default.
- W3080433234 cites W2619767629 @default.
- W3080433234 cites W2761684247 @default.
- W3080433234 cites W2765825416 @default.
- W3080433234 cites W2769457059 @default.
- W3080433234 cites W2793831793 @default.
- W3080433234 cites W2798214660 @default.
- W3080433234 cites W2805797923 @default.
- W3080433234 cites W2880239935 @default.
- W3080433234 cites W2905160288 @default.
- W3080433234 cites W2911424673 @default.
- W3080433234 cites W2911964244 @default.
- W3080433234 cites W2913731472 @default.
- W3080433234 cites W2919414739 @default.
- W3080433234 cites W2944926649 @default.
- W3080433234 cites W2951859248 @default.
- W3080433234 cites W2965059688 @default.
- W3080433234 cites W2969688345 @default.
- W3080433234 cites W2989979027 @default.
- W3080433234 cites W3004931647 @default.
- W3080433234 cites W3007086118 @default.
- W3080433234 cites W3008622752 @default.
- W3080433234 cites W3012313541 @default.
- W3080433234 cites W4210949798 @default.
- W3080433234 cites W4241727697 @default.
- W3080433234 doi "https://doi.org/10.3390/rs12172718" @default.
- W3080433234 hasPublicationYear "2020" @default.
- W3080433234 type Work @default.
- W3080433234 sameAs 3080433234 @default.
- W3080433234 citedByCount "26" @default.
- W3080433234 countsByYear W30804332342020 @default.
- W3080433234 countsByYear W30804332342021 @default.
- W3080433234 countsByYear W30804332342022 @default.
- W3080433234 countsByYear W30804332342023 @default.
- W3080433234 crossrefType "journal-article" @default.
- W3080433234 hasAuthorship W3080433234A5003847530 @default.
- W3080433234 hasAuthorship W3080433234A5020972581 @default.
- W3080433234 hasAuthorship W3080433234A5078736973 @default.
- W3080433234 hasBestOaLocation W30804332341 @default.
- W3080433234 hasConcept C114793014 @default.
- W3080433234 hasConcept C119857082 @default.
- W3080433234 hasConcept C127313418 @default.
- W3080433234 hasConcept C13772937 @default.
- W3080433234 hasConcept C181843262 @default.
- W3080433234 hasConcept C184149073 @default.
- W3080433234 hasConcept C186295008 @default.
- W3080433234 hasConcept C205649164 @default.
- W3080433234 hasConcept C2524010 @default.
- W3080433234 hasConcept C33923547 @default.
- W3080433234 hasConcept C37054046 @default.
- W3080433234 hasConcept C41008148 @default.
- W3080433234 hasConcept C58640448 @default.
- W3080433234 hasConcept C62649853 @default.