Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080452576> ?p ?o ?g. }
- W3080452576 endingPage "e0238280" @default.
- W3080452576 startingPage "e0238280" @default.
- W3080452576 abstract "In December 2019, the novel coronavirus pneumonia (COVID-19) occurred in Wuhan, Hubei Province, China. The epidemic quickly broke out and spread throughout the country. Now it becomes a pandemic that affects the whole world. In this study, three models were used to fit and predict the epidemic situation in China: a modified SEIRD (Susceptible-Exposed-Infected-Recovered-Dead) dynamic model, a neural network method LSTM (Long Short-Term Memory), and a GWR (Geographically Weighted Regression) model reflecting spatial heterogeneity. Overall, all the three models performed well with great accuracy. The dynamic SEIRD prediction APE (absolute percent error) of China had been ≤ 1.0% since Mid-February. The LSTM model showed comparable accuracy. The GWR model took into account the influence of geographical differences, with R2 = 99.98% in fitting and 97.95% in prediction. Wilcoxon test showed that none of the three models outperformed the other two at the significance level of 0.05. The parametric analysis of the infectious rate and recovery rate demonstrated that China's national policies had effectively slowed down the spread of the epidemic. Furthermore, the models in this study provided a wide range of implications for other countries to predict the short-term and long-term trend of COVID-19, and to evaluate the intensity and effect of their interventions." @default.
- W3080452576 created "2020-09-01" @default.
- W3080452576 creator A5000722976 @default.
- W3080452576 creator A5008911055 @default.
- W3080452576 creator A5013165230 @default.
- W3080452576 creator A5016393389 @default.
- W3080452576 creator A5024282813 @default.
- W3080452576 creator A5025900148 @default.
- W3080452576 creator A5036230558 @default.
- W3080452576 creator A5043494174 @default.
- W3080452576 creator A5044367029 @default.
- W3080452576 creator A5049597755 @default.
- W3080452576 creator A5071882021 @default.
- W3080452576 creator A5086602793 @default.
- W3080452576 date "2020-08-27" @default.
- W3080452576 modified "2023-10-11" @default.
- W3080452576 title "Predicting and analyzing the COVID-19 epidemic in China: Based on SEIRD, LSTM and GWR models" @default.
- W3080452576 cites W1878853999 @default.
- W3080452576 cites W1972612037 @default.
- W3080452576 cites W1978218725 @default.
- W3080452576 cites W1986131165 @default.
- W3080452576 cites W2002607717 @default.
- W3080452576 cites W2046704978 @default.
- W3080452576 cites W2047120335 @default.
- W3080452576 cites W2049978891 @default.
- W3080452576 cites W2064675550 @default.
- W3080452576 cites W2096145431 @default.
- W3080452576 cites W2123499070 @default.
- W3080452576 cites W2147166346 @default.
- W3080452576 cites W2156593399 @default.
- W3080452576 cites W2286494817 @default.
- W3080452576 cites W2913031925 @default.
- W3080452576 cites W2969976360 @default.
- W3080452576 cites W3001118548 @default.
- W3080452576 cites W3001975323 @default.
- W3080452576 cites W3002539152 @default.
- W3080452576 cites W3002715510 @default.
- W3080452576 cites W3002764620 @default.
- W3080452576 cites W3003573988 @default.
- W3080452576 cites W3003689784 @default.
- W3080452576 cites W3003872355 @default.
- W3080452576 cites W3004114601 @default.
- W3080452576 cites W3004178986 @default.
- W3080452576 cites W3004516828 @default.
- W3080452576 cites W3004559047 @default.
- W3080452576 cites W3005064183 @default.
- W3080452576 cites W3005251696 @default.
- W3080452576 cites W3005482258 @default.
- W3080452576 cites W3005741377 @default.
- W3080452576 cites W3006163015 @default.
- W3080452576 cites W3006703916 @default.
- W3080452576 cites W3007375026 @default.
- W3080452576 cites W3008028633 @default.
- W3080452576 cites W3008116551 @default.
- W3080452576 cites W3008294222 @default.
- W3080452576 cites W3008629533 @default.
- W3080452576 cites W3008696669 @default.
- W3080452576 cites W3009333463 @default.
- W3080452576 cites W3009876049 @default.
- W3080452576 cites W3011534780 @default.
- W3080452576 cites W3013215798 @default.
- W3080452576 cites W3013360115 @default.
- W3080452576 cites W3013444644 @default.
- W3080452576 cites W3013649595 @default.
- W3080452576 cites W3013862524 @default.
- W3080452576 cites W3015988827 @default.
- W3080452576 cites W3025427174 @default.
- W3080452576 cites W3030209754 @default.
- W3080452576 cites W3033469780 @default.
- W3080452576 cites W3034239427 @default.
- W3080452576 cites W3035523931 @default.
- W3080452576 cites W3035974693 @default.
- W3080452576 doi "https://doi.org/10.1371/journal.pone.0238280" @default.
- W3080452576 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7451659" @default.
- W3080452576 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32853285" @default.
- W3080452576 hasPublicationYear "2020" @default.
- W3080452576 type Work @default.
- W3080452576 sameAs 3080452576 @default.
- W3080452576 citedByCount "34" @default.
- W3080452576 countsByYear W30804525762021 @default.
- W3080452576 countsByYear W30804525762022 @default.
- W3080452576 countsByYear W30804525762023 @default.
- W3080452576 crossrefType "journal-article" @default.
- W3080452576 hasAuthorship W3080452576A5000722976 @default.
- W3080452576 hasAuthorship W3080452576A5008911055 @default.
- W3080452576 hasAuthorship W3080452576A5013165230 @default.
- W3080452576 hasAuthorship W3080452576A5016393389 @default.
- W3080452576 hasAuthorship W3080452576A5024282813 @default.
- W3080452576 hasAuthorship W3080452576A5025900148 @default.
- W3080452576 hasAuthorship W3080452576A5036230558 @default.
- W3080452576 hasAuthorship W3080452576A5043494174 @default.
- W3080452576 hasAuthorship W3080452576A5044367029 @default.
- W3080452576 hasAuthorship W3080452576A5049597755 @default.
- W3080452576 hasAuthorship W3080452576A5071882021 @default.
- W3080452576 hasAuthorship W3080452576A5086602793 @default.
- W3080452576 hasBestOaLocation W30804525761 @default.
- W3080452576 hasConcept C105795698 @default.
- W3080452576 hasConcept C116675565 @default.