Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080459878> ?p ?o ?g. }
- W3080459878 endingPage "57" @default.
- W3080459878 startingPage "43" @default.
- W3080459878 abstract "Abstract The emotional state of people plays a key role in physiological and behavioral human interaction. Emotional state analysis entails many fields such as neuroscience, cognitive sciences, and biomedical engineering because the parameters of interest contain the complex neuronal activities of the brain. Electroencephalogram (EEG) signals are processed to communicate brain signals with external systems and make predictions over emotional states. This paper proposes a novel method for emotion recognition based on deep convolutional neural networks (CNNs) that are used to classify Valence, Arousal, Dominance, and Liking emotional states. Hence, a novel approach is proposed for emotion recognition with time series of multi-channel EEG signals from a Database for Emotion Analysis and Using Physiological Signals (DEAP). We propose a new approach to emotional state estimation utilizing CNN-based classification of multi-spectral topology images obtained from EEG signals. In contrast to most of the EEG-based approaches that eliminate spatial information of EEG signals, converting EEG signals into a sequence of multi-spectral topology images, temporal, spectral, and spatial information of EEG signals are preserved. The deep recurrent convolutional network is trained to learn important representations from a sequence of three-channel topographical images. We have achieved test accuracy of 90.62% for negative and positive Valence, 86.13% for high and low Arousal, 88.48% for high and low Dominance, and finally 86.23% for like–unlike. The evaluations of this method on emotion recognition problem revealed significant improvements in the classification accuracy when compared with other studies using deep neural networks (DNNs) and one-dimensional CNNs." @default.
- W3080459878 created "2020-09-01" @default.
- W3080459878 creator A5005177960 @default.
- W3080459878 creator A5012672901 @default.
- W3080459878 creator A5033094271 @default.
- W3080459878 creator A5088292562 @default.
- W3080459878 date "2020-08-25" @default.
- W3080459878 modified "2023-10-07" @default.
- W3080459878 title "EEG-based emotion recognition with deep convolutional neural networks" @default.
- W3080459878 cites W1483854707 @default.
- W3080459878 cites W1530660381 @default.
- W3080459878 cites W1806891645 @default.
- W3080459878 cites W1984144775 @default.
- W3080459878 cites W2002055708 @default.
- W3080459878 cites W2011966906 @default.
- W3080459878 cites W2013893809 @default.
- W3080459878 cites W2035642468 @default.
- W3080459878 cites W2165611870 @default.
- W3080459878 cites W2170415219 @default.
- W3080459878 cites W2222099799 @default.
- W3080459878 cites W2232827647 @default.
- W3080459878 cites W2280370717 @default.
- W3080459878 cites W2289714406 @default.
- W3080459878 cites W2291961022 @default.
- W3080459878 cites W2318383278 @default.
- W3080459878 cites W2467010667 @default.
- W3080459878 cites W2523525429 @default.
- W3080459878 cites W2525648609 @default.
- W3080459878 cites W2565944610 @default.
- W3080459878 cites W2572280252 @default.
- W3080459878 cites W2594911616 @default.
- W3080459878 cites W2598442119 @default.
- W3080459878 cites W2731836491 @default.
- W3080459878 cites W2749183303 @default.
- W3080459878 cites W2760473359 @default.
- W3080459878 cites W2801360775 @default.
- W3080459878 cites W2806047736 @default.
- W3080459878 cites W2823353612 @default.
- W3080459878 cites W2886892635 @default.
- W3080459878 cites W2900938387 @default.
- W3080459878 cites W2903462437 @default.
- W3080459878 cites W2913846632 @default.
- W3080459878 cites W2915903427 @default.
- W3080459878 cites W2922376586 @default.
- W3080459878 cites W2926366943 @default.
- W3080459878 cites W2937228458 @default.
- W3080459878 cites W2953214845 @default.
- W3080459878 cites W2983980224 @default.
- W3080459878 cites W2997026866 @default.
- W3080459878 cites W3182920176 @default.
- W3080459878 cites W4236533540 @default.
- W3080459878 cites W4292333043 @default.
- W3080459878 doi "https://doi.org/10.1515/bmt-2019-0306" @default.
- W3080459878 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32845859" @default.
- W3080459878 hasPublicationYear "2020" @default.
- W3080459878 type Work @default.
- W3080459878 sameAs 3080459878 @default.
- W3080459878 citedByCount "37" @default.
- W3080459878 countsByYear W30804598782020 @default.
- W3080459878 countsByYear W30804598782021 @default.
- W3080459878 countsByYear W30804598782022 @default.
- W3080459878 countsByYear W30804598782023 @default.
- W3080459878 crossrefType "journal-article" @default.
- W3080459878 hasAuthorship W3080459878A5005177960 @default.
- W3080459878 hasAuthorship W3080459878A5012672901 @default.
- W3080459878 hasAuthorship W3080459878A5033094271 @default.
- W3080459878 hasAuthorship W3080459878A5088292562 @default.
- W3080459878 hasConcept C108583219 @default.
- W3080459878 hasConcept C121332964 @default.
- W3080459878 hasConcept C153180895 @default.
- W3080459878 hasConcept C154945302 @default.
- W3080459878 hasConcept C15744967 @default.
- W3080459878 hasConcept C168900304 @default.
- W3080459878 hasConcept C169760540 @default.
- W3080459878 hasConcept C206310091 @default.
- W3080459878 hasConcept C2777438025 @default.
- W3080459878 hasConcept C28490314 @default.
- W3080459878 hasConcept C36951298 @default.
- W3080459878 hasConcept C41008148 @default.
- W3080459878 hasConcept C522805319 @default.
- W3080459878 hasConcept C62520636 @default.
- W3080459878 hasConcept C81363708 @default.
- W3080459878 hasConceptScore W3080459878C108583219 @default.
- W3080459878 hasConceptScore W3080459878C121332964 @default.
- W3080459878 hasConceptScore W3080459878C153180895 @default.
- W3080459878 hasConceptScore W3080459878C154945302 @default.
- W3080459878 hasConceptScore W3080459878C15744967 @default.
- W3080459878 hasConceptScore W3080459878C168900304 @default.
- W3080459878 hasConceptScore W3080459878C169760540 @default.
- W3080459878 hasConceptScore W3080459878C206310091 @default.
- W3080459878 hasConceptScore W3080459878C2777438025 @default.
- W3080459878 hasConceptScore W3080459878C28490314 @default.
- W3080459878 hasConceptScore W3080459878C36951298 @default.
- W3080459878 hasConceptScore W3080459878C41008148 @default.
- W3080459878 hasConceptScore W3080459878C522805319 @default.
- W3080459878 hasConceptScore W3080459878C62520636 @default.
- W3080459878 hasConceptScore W3080459878C81363708 @default.
- W3080459878 hasIssue "1" @default.